login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342891
Triangle read by rows: T(n,k) = generalized binomial coefficients (n,k)_12 (n >= 0, 0 <= k <= n).
13
1, 1, 1, 1, 13, 1, 1, 91, 91, 1, 1, 455, 3185, 455, 1, 1, 1820, 63700, 63700, 1820, 1, 1, 6188, 866320, 4331600, 866320, 6188, 1, 1, 18564, 8836464, 176729280, 176729280, 8836464, 18564, 1, 1, 50388, 71954064, 4892876352, 19571505408, 4892876352, 71954064, 50388, 1
OFFSET
0,5
COMMENTS
For references, links, programs, etc., see earlier sequences in this series, especially A342889.
LINKS
FORMULA
The generalized binomial coefficient (n,k)_m = Product_{j=1..k} binomial(n+m-j,m)/binomial(j+m-1,m).
EXAMPLE
Triangle begins:
[1],
[1, 1],
[1, 13, 1],
[1, 91, 91, 1],
[1, 455, 3185, 455, 1],
[1, 1820, 63700, 63700, 1820, 1],
[1, 6188, 866320, 4331600, 866320, 6188, 1],
[1, 18564, 8836464, 176729280, 176729280, 8836464, 18564, 1],
...
PROG
(PARI) f(n, k, m) = prod(j=1, k, binomial(n-j+m, m)/binomial(j-1+m, m));
T(n, k) = f(n, k, 12); \\ Seiichi Manyama, Apr 02 2021
CROSSREFS
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
Sequence in context: A176204 A176492 A174731 * A174694 A353952 A340432
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Apr 01 2021
STATUS
approved