login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056940 Number of antichains (or order ideals) in the poset 4*m*n or plane partitions with rows <= m, columns <= n and entries <= 4 10
1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 35, 105, 35, 1, 1, 70, 490, 490, 70, 1, 1, 126, 1764, 4116, 1764, 126, 1, 1, 210, 5292, 24696, 24696, 5292, 210, 1, 1, 330, 13860, 116424, 232848, 116424, 13860, 330, 1, 1, 495, 32670, 457380, 1646568, 1646568, 457380 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Determinants of 4 X 4 subarrays of Pascal's triangle A007318 (a matrix entry being set to 0 when not present). - Gerald McGarvey, Feb 24 2005

Row sums are: {1, 2, 7, 32, 177, 1122, 7898, 60398, 494078, 4274228, 38763298,...}. - Roger L. Bagula, Mar 08 2010

Also determinants of 4x4 arrays whose entries come from a single row: T(n,k) = det [C(n,k),C(n,k-1),C(n,k-2),C(n,k-3); C(n,k+1),C(n,k),C(n,k-1),C(n,k-2); C(n,k+2),C(n,k+1),C(n,k),C(n,k-1); C(n,k+3),C(n,k+2),C(n,k+1),C(n,k)]. - Peter Bala, May 10 2012

REFERENCES

Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), p. 103-124

P. A. MacMahon, Combinatory Analysis, sect 495, 1916.

R. P. Stanley, Theory and application of plane partitions. II. Studies in Appl. Math. 50 (1971), p. 259-279. Thm. 18.1

LINKS

Table of n, a(n) for n=0..51.

J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]

P. A. MacMahon, Combinatory analysis.

Index entries for sequences related to posets

FORMULA

Product[ C(n+m+k, m+k)/C(n+k, k), {k, 0, 3} ] gives the array as a square.

Contribution from Roger L. Bagula, Mar 08 2010: (Start)

q=3;

c(n,q)=Product[Product[i + j, {j, 0, q}], {i, 1, n}];

T(n,m,q)=c(n,q)/(c(m,q)*c(n-m,q) (End)

From Peter Bala, Oct 13 2011: (Start)

T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1).

Define a(r,n) = n!*(n+1)!*...*(n+r)!. The triangle whose (n,k)-th entry is a(r,0)*a(r,n)/(a(r,k)*a(r,n-k)) is A007318 (r = 0), A001263 (r = 1), A056939 (r = 2), A056940 (r = 3) and A056941 (r = 4). (End)

EXAMPLE

Contribution from Roger L. Bagula, Mar 08 2010: (Start)

{1},

{1, 1},

{1, 5, 1},

{1, 15, 15, 1},

{1, 35, 105, 35, 1},

{1, 70, 490, 490, 70, 1},

{1, 126, 1764, 4116, 1764, 126, 1},

{1, 210, 5292, 24696, 24696, 5292, 210, 1},

{1, 330, 13860, 116424, 232848, 116424, 13860, 330, 1},

{1, 495, 32670, 457380, 1646568, 1646568, 457380, 32670, 495, 1},

{1, 715, 70785, 1557270, 9343620, 16818516, 9343620, 1557270, 70785, 715, 1} (End)

MATHEMATICA

Contribution from Roger L. Bagula, Mar 08 2010: (Start)

c[n_, q_] = Product[Product[i + j, {j, 0, q}], {i, 1, n}];

t[n_, m_, q_] = c[n, q]/(c[m, q]*c[n - m, q]);

Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}] (End)

CROSSREFS

Cf. A000372, A056932, A001263, A056939, A056941.

Antidiagonals sum to A005362 (Hoggatt sequence)

Cf. q=2: A056939 [From Roger L. Bagula, Mar 08 2010]

Sequence in context: A136267 A109960 A196019 * A168288 A157523 A141691

Adjacent sequences:  A056937 A056938 A056939 * A056941 A056942 A056943

KEYWORD

nonn,easy,tabl

AUTHOR

Mitch Harris

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 22 18:16 EST 2018. Contains 299469 sequences. (Running on oeis4.)