login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141691
A linear combination of Eulerian numbers (A008292) and Pascal's triangle (A007318); t(n,m)=(3*A008292(n,m)-A007318(n,m))/2.
0
1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 96, 37, 1, 1, 83, 448, 448, 83, 1, 1, 177, 1779, 3614, 1779, 177, 1, 1, 367, 6429, 23411, 23411, 6429, 367, 1, 1, 749, 21898, 132323, 234250, 132323, 21898, 749, 1, 1, 1515, 71742, 682746, 1965468, 1965468, 682746, 71742
OFFSET
1,5
COMMENTS
Row sums are:
{1, 2, 7, 32, 172, 1064, 7528, 60416, 544192, 5442944}.
FORMULA
t(n,m)=(3*A008292(n,m)-A007318(n,m))/2.
EXAMPLE
{1},
{1, 1},
{1, 5, 1},
{1, 15, 15, 1},
{1, 37, 96, 37, 1},
{1, 83, 448, 448, 83, 1},
{1, 177, 1779, 3614, 1779, 177, 1},
{1, 367, 6429, 23411, 23411, 6429, 367, 1},
{1, 749, 21898, 132323, 234250, 132323, 21898, 749, 1},
{1, 1515, 71742, 682746, 1965468, 1965468, 682746, 71742, 1515, 1}
MATHEMATICA
Table[Table[((2*Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}] - Binomial[n - 1, k]) + Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}])/2, {k, 0, n - 1}], {n, 1, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A056940 A168288 A157523 * A157147 A347973 A232103
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Sep 09 2008
STATUS
approved