The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141691 A linear combination of Eulerian numbers (A008292) and Pascal's triangle (A007318); t(n,m)=(3*A008292(n,m)-A007318(n,m))/2. 0
 1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 96, 37, 1, 1, 83, 448, 448, 83, 1, 1, 177, 1779, 3614, 1779, 177, 1, 1, 367, 6429, 23411, 23411, 6429, 367, 1, 1, 749, 21898, 132323, 234250, 132323, 21898, 749, 1, 1, 1515, 71742, 682746, 1965468, 1965468, 682746, 71742 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Row sums are: {1, 2, 7, 32, 172, 1064, 7528, 60416, 544192, 5442944}. LINKS FORMULA t(n,m)=(3*A008292(n,m)-A007318(n,m))/2. EXAMPLE {1}, {1, 1}, {1, 5, 1}, {1, 15, 15, 1}, {1, 37, 96, 37, 1}, {1, 83, 448, 448, 83, 1}, {1, 177, 1779, 3614, 1779, 177, 1}, {1, 367, 6429, 23411, 23411, 6429, 367, 1}, {1, 749, 21898, 132323, 234250, 132323, 21898, 749, 1}, {1, 1515, 71742, 682746, 1965468, 1965468, 682746, 71742, 1515, 1} MATHEMATICA Table[Table[((2*Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}] - Binomial[n - 1, k]) + Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}])/2, {k, 0, n - 1}], {n, 1, 10}]; Flatten[%] CROSSREFS Cf. A008292, A007318. Sequence in context: A056940 A168288 A157523 * A157147 A232103 A292357 Adjacent sequences:  A141688 A141689 A141690 * A141692 A141693 A141694 KEYWORD nonn,uned AUTHOR Roger L. Bagula, Sep 09 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 18:33 EDT 2021. Contains 345049 sequences. (Running on oeis4.)