login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A linear combination of Eulerian numbers (A008292) and Pascal's triangle (A007318); t(n,m)=(3*A008292(n,m)-A007318(n,m))/2.
0

%I #2 Mar 30 2012 17:34:27

%S 1,1,1,1,5,1,1,15,15,1,1,37,96,37,1,1,83,448,448,83,1,1,177,1779,3614,

%T 1779,177,1,1,367,6429,23411,23411,6429,367,1,1,749,21898,132323,

%U 234250,132323,21898,749,1,1,1515,71742,682746,1965468,1965468,682746,71742

%N A linear combination of Eulerian numbers (A008292) and Pascal's triangle (A007318); t(n,m)=(3*A008292(n,m)-A007318(n,m))/2.

%C Row sums are:

%C {1, 2, 7, 32, 172, 1064, 7528, 60416, 544192, 5442944}.

%F t(n,m)=(3*A008292(n,m)-A007318(n,m))/2.

%e {1},

%e {1, 1},

%e {1, 5, 1},

%e {1, 15, 15, 1},

%e {1, 37, 96, 37, 1},

%e {1, 83, 448, 448, 83, 1},

%e {1, 177, 1779, 3614, 1779, 177, 1},

%e {1, 367, 6429, 23411, 23411, 6429, 367, 1},

%e {1, 749, 21898, 132323, 234250, 132323, 21898, 749, 1},

%e {1, 1515, 71742, 682746, 1965468, 1965468, 682746, 71742, 1515, 1}

%t Table[Table[((2*Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}] - Binomial[n - 1, k]) + Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}])/2, {k, 0, n - 1}], {n, 1, 10}]; Flatten[%]

%Y Cf. A008292, A007318.

%K nonn,uned

%O 1,5

%A _Roger L. Bagula_, Sep 09 2008