login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056932
Antichains (or order ideals) in the poset 2*2*2*n or size of the distributive lattice J(2*2*2*n).
14
1, 20, 168, 887, 3490, 11196, 30900, 75966, 170379, 354640, 693836, 1288365, 2287844, 3908776, 6456600, 10352796, 16167765, 24660252, 36824128, 53943395, 77656326, 110029700, 153644140, 211691610, 288086175, 387589176, 515950020, 680063833, 888147272
OFFSET
0,2
COMMENTS
a(n) is the number of order preserving maps from B_3 into [n+1]. a(n) is also the number of length n+1 multichains from bottom to top in J(B_3). See Stanley reference for bijections with description in title. - Geoffrey Critzer, Jan 07 2021
REFERENCES
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, page 256, Proposition 3.5.1.
LINKS
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 9.
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = 48*C(n+8, 8) - 96*C(n+7, 7) + 63*C(n+6, 6) - 15*C(n+5, 5) + C(n+4, 4).
G.f.: (1+11*x+24*x^2+11*x^3+x^4)/(1-x)^9. [Berman and Koehler]
MATHEMATICA
Table[48*Binomial[n+8, 8] - 96*Binomial[n+7, 7] + 63*Binomial[n+6, 6] - 15*Binomial[n+5, 5] + Binomial[n+4, 4], {n, 0, nn}] (* T. D. Noe, May 29 2012 *)
KEYWORD
nonn,easy,changed
AUTHOR
STATUS
approved