login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010826
Expansion of Product_{k>=1} (1 - x^k)^20.
2
1, -20, 170, -760, 1615, 476, -11210, 22440, 1615, -64600, 60002, 51680, -9520, -213180, -83980, 803528, -379525, -692360, 119700, 80920, 1899830, -1235360, -755990, -1200040, -1981435, 8388956, -361760, -5068440
OFFSET
0,2
REFERENCES
Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
FORMULA
a(0) = 1, a(n) = -(20/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-20*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
CROSSREFS
Sequence in context: A292281 A056932 A304508 * A022712 A359718 A056128
KEYWORD
sign
AUTHOR
STATUS
approved