login
A010825
Expansion of Product_{k>=1} (1 - x^k)^19.
2
1, -19, 152, -627, 1140, 988, -9063, 14212, 7410, -44270, 22781, 38114, 36176, -137256, -154850, 480605, -46493, -316065, -153406, -254525, 1156948, -184927, 88483, -1051042, -2381650, 3838874, 1417039, -542146
OFFSET
0,2
REFERENCES
Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
FORMULA
a(0) = 1, a(n) = -(19/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-19*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
CROSSREFS
Sequence in context: A126514 A168025 A160431 * A022711 A355217 A254142
KEYWORD
sign
AUTHOR
STATUS
approved