The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254142 a(n) = (9*n+10)*binomial(n+9,9)/10. 10
1, 19, 154, 814, 3289, 11011, 32032, 83512, 199342, 442442, 923780, 1830764, 3468374, 6317234, 11113784, 18958808, 31461815, 50930165, 80613390, 125014890, 190285095, 284712285, 419329560, 608658960, 871616460, 1232604516, 1722822024, 2381824984 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Partial sums of A056003.
If n is of the form 8*k+2*(-1)^k-1 or 8*k+2*(-1)^k-2 then a(n) is odd.
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: (1 + 8*x)/(1-x)^11.
a(n) = Sum_{i=0..n} (i+1)*A000581(i+8).
a(n+1) = 8*A001287(n+10) + A001287(n+11).
MAPLE
seq((9*n+10)*binomial(n+9, 9)/10, n=0..30); # G. C. Greubel, Aug 28 2019
MATHEMATICA
Table[(9n+10)Binomial[n+9, 9]/10, {n, 0, 30}]
PROG
(PARI) vector(30, n, n--; (9*n+10)*binomial(n+9, 9)/10)
(Sage) [(9*n+10)*binomial(n+9, 9)/10 for n in (0..30)]
(Magma) [(9*n+10)*Binomial(n+9, 9)/10: n in [0..30]];
(GAP) List([0..30], n-> (9*n+10)*Binomial(n+9, 9)/10); # G. C. Greubel, Aug 28 2019
CROSSREFS
Cf. sequences of the type (k*n+k+1)*binomial(n+k,k)/(k+1): A000217 (k=1), A000330 (k=2), A001296 (k=3), A034263 (k=4), A051946 (k=5), A034265 (k=6), A034266 (k=7), A056122 (k=8), this sequence (k=9).
Sequence in context: A010825 A022711 A355217 * A107891 A302352 A301398
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 26 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 15:56 EDT 2024. Contains 373463 sequences. (Running on oeis4.)