login
A254142
a(n) = (9*n+10)*binomial(n+9,9)/10.
10
1, 19, 154, 814, 3289, 11011, 32032, 83512, 199342, 442442, 923780, 1830764, 3468374, 6317234, 11113784, 18958808, 31461815, 50930165, 80613390, 125014890, 190285095, 284712285, 419329560, 608658960, 871616460, 1232604516, 1722822024, 2381824984
OFFSET
0,2
COMMENTS
Partial sums of A056003.
If n is of the form 8*k+2*(-1)^k-1 or 8*k+2*(-1)^k-2 then a(n) is odd.
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: (1 + 8*x)/(1-x)^11.
a(n) = Sum_{i=0..n} (i+1)*A000581(i+8).
a(n+1) = 8*A001287(n+10) + A001287(n+11).
MAPLE
seq((9*n+10)*binomial(n+9, 9)/10, n=0..30); # G. C. Greubel, Aug 28 2019
MATHEMATICA
Table[(9n+10)Binomial[n+9, 9]/10, {n, 0, 30}]
PROG
(PARI) vector(30, n, n--; (9*n+10)*binomial(n+9, 9)/10)
(Sage) [(9*n+10)*binomial(n+9, 9)/10 for n in (0..30)]
(Magma) [(9*n+10)*Binomial(n+9, 9)/10: n in [0..30]];
(GAP) List([0..30], n-> (9*n+10)*Binomial(n+9, 9)/10); # G. C. Greubel, Aug 28 2019
CROSSREFS
Cf. sequences of the type (k*n+k+1)*binomial(n+k,k)/(k+1): A000217 (k=1), A000330 (k=2), A001296 (k=3), A034263 (k=4), A051946 (k=5), A034265 (k=6), A034266 (k=7), A056122 (k=8), this sequence (k=9).
Sequence in context: A010825 A022711 A355217 * A107891 A302352 A301398
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 26 2015
STATUS
approved