login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254145
a(n) = 1*7^n + 2*6^n + 3*5^n + 4*4^n + 5*3^n + 6*2^n + 7*1^n.
7
28, 84, 336, 1596, 8400, 47244, 278256, 1695036, 10592400, 67518444, 437200176, 2867080476, 18997064400, 126948964044, 854359702896, 5783851121916, 39350309552400, 268842017200044, 1843254419626416, 12675940450459356
OFFSET
0,1
COMMENTS
This is the sequence of seventh terms of "second partial sums of m-th powers".
LINKS
Luciano Ancora, Demonstration of formula
Index entries for linear recurrences with constant coefficients, signature (28,-322,1960,-6769,13132,-13068,5040).
FORMULA
G.f.: -4*(17316*x^6 - 32926*x^5 + 24199*x^4 - 8911*x^3 + 1750*x^2 - 175*x + 7) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)). - Colin Barker, Jan 26 2015
From Peter Bala, Jan 31 2016: (Start)
a(n) = (x + 1)*( Bernoulli(n + 1, x + 1) - Bernoulli(n + 1, 1) )/(n + 1) - ( Bernoulli(n + 2, x + 1) - Bernoulli(n + 2, 1) )/(n + 2) at x = 7.
a(n) = (1/6!)*Sum_{k = 0..n} (-1)^(k+n)*(k + 8)!*Stirling2(n,k)/ ((k + 1)*(k + 2)). (End)
MAPLE
seq(add(i*(8 - i)^n, i = 1..7), n = 0..20); # Peter Bala, Jan 31 2017
MATHEMATICA
Table[6 2^n + 4 4^n + 5 3^n + 2 6^n + 3 5^n + 7^n + 7, {n, 0, 25}] (* *)
LinearRecurrence[{28, -322, 1960, -6769, 13132, -13068, 5040}, {28, 84, 336, 1596, 8400, 47244, 278256}, 30] (* or *) Table[Total[ Range[ 7]Range[ 7, 1, -1]^n], {n, 0, 20}] (* Harvey P. Dale, Jun 21 2016 *)
PROG
(PARI) Vec(-4*(17316*x^6 -32926*x^5 +24199*x^4 -8911*x^3 +1750*x^2 -175*x +7) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Jan 26 2015
STATUS
approved