login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254146
a(n) = 1*8^n + 2*7^n + 3*6^n + 4*5^n + 5*4^n + 6*3^n + 7*2^n + 8*1^n.
7
36, 120, 540, 2892, 17172, 109020, 725220, 4992492, 35277012, 254402940, 1864757700, 13850340492, 103996064052, 787943896860, 6015370201380, 46217575406892, 357036252710292, 2770979252910780, 21591510288112260, 168818732978719692, 1323861500735007732
OFFSET
0,1
COMMENTS
This is the sequence of eighth terms of "second partial sums of m-th powers".
LINKS
Index entries for linear recurrences with constant coefficients, signature (36,-546,4536,-22449,67284,-118124,109584,-40320).
FORMULA
G.f.: -12*(55308*x^7 - 113262*x^6 + 92327*x^5 - 39312*x^4 + 9527*x^3 - 1323*x^2 + 98*x -3) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)). - Colin Barker, Jan 28 2015
From Peter Bala, Jan 31 2016: (Start)
a(n) = (x + 1)*( Bernoulli(n + 1, x + 1) - Bernoulli(n + 1, 1) )/(n + 1) - ( Bernoulli(n + 2, x + 1) - Bernoulli(n + 2, 1) )/(n + 2) at x = 8.
a(n) = 1/7!*Sum_{k = 0..n} (-1)^(k+n)*(k + 9)!*Stirling2(n,k)/ ((k + 1)*(k + 2)). (End)
a(n) = 36*a(n-1)-546*a(n-2)+4536*a(n-3)-22449*a(n-4)+67284*a(n-5)-118124*a(n-6)+109584*a(n-7)-40320*a(n-8). - Wesley Ivan Hurt, May 24 2021
MAPLE
seq(add(i*(9 - i)^n, i = 1..8), n = 0..20); # Peter Bala, Jan 31 2017
MATHEMATICA
Table[7 2^n + 5 4^n + 8^n + 6 3^n + 3 6^n + 4 5^n + 2 7^n + 8, {n, 0, 30}] (* Vincenzo Librandi, Jan 28 2015 *)
LinearRecurrence[{36, -546, 4536, -22449, 67284, -118124, 109584, -40320}, {36, 120, 540, 2892, 17172, 109020, 725220, 4992492}, 30] (* Harvey P. Dale, Mar 02 2022 *)
PROG
(PARI) vector(30, n, n--; 7*2^n + 5*4^n + 8^n + 6*3^n + 3*6^n + 4*5^n + 2*7^n + 8) \\ Colin Barker, Jan 28 2015
(Magma) [7*2^n+5*4^n+8^n+6*3^n+3*6^n+4*5^n+2*7^n+8: n in [0..30]]; // Vincenzo Librandi, Jan 28 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Jan 27 2015
STATUS
approved