login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254031
a(n) = 1*5^n + 2*4^n + 3*3^n + 4*2^n + 5*1^n.
7
15, 35, 105, 371, 1449, 6035, 26265, 117971, 542409, 2538515, 12044025, 57756371, 279305769, 1359736595, 6654800985, 32708239571, 161307227529, 797687136275, 3953299529145, 19626731023571, 97576919443689, 485664640673555
OFFSET
0,1
COMMENTS
This is the sequence of fifth terms of "second partial sums of m-th powers".
FORMULA
G.f.: -(1044*x^4 - 1604*x^3 + 855*x^2 - 190*x + 15) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Jan 26 2015
From Peter Bala, Jan 31 2016: (Start)
a(n) = (x + 1)*( Bernoulli(n + 1, x + 1) - Bernoulli(n + 1, 1) )/(n + 1) - ( Bernoulli(n + 2, x + 1) - Bernoulli(n + 2, 1) )/(n + 2) at x = 5.
a(n) = (1/4!)*Sum_{k = 0..n} (-1)^(k+n)*(k + 6)!*Stirling2(n,k)/
((k + 1)*(k + 2)). (End)
MAPLE
seq(add(i*(6 - i)^n, i = 1..5), n = 0..20); # Peter Bala, Jan 31 2017
MATHEMATICA
Table[2^(n + 2) + 2^(2 n + 1) + 3^(n + 1) + 5^n + 5, {n, 0, 25}] (* Bruno Berselli, Jan 27 2015 *)
LinearRecurrence[{15, -85, 225, -274, 120}, {15, 35, 105, 371, 1449}, 30] (* Harvey P. Dale, Jan 24 2022 *)
PROG
(PARI) Vec(-(1044*x^4-1604*x^3+855*x^2-190*x+15)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Jan 26 2015
STATUS
approved