OFFSET
0,1
COMMENTS
This is the sequence of fifth terms of "second partial sums of m-th powers".
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Luciano Ancora, Demonstration of formulas
Index entries for linear recurrences with constant coefficients, signature (15,-85,225,-274,120).
FORMULA
G.f.: -(1044*x^4 - 1604*x^3 + 855*x^2 - 190*x + 15) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Jan 26 2015
From Peter Bala, Jan 31 2016: (Start)
a(n) = (x + 1)*( Bernoulli(n + 1, x + 1) - Bernoulli(n + 1, 1) )/(n + 1) - ( Bernoulli(n + 2, x + 1) - Bernoulli(n + 2, 1) )/(n + 2) at x = 5.
a(n) = (1/4!)*Sum_{k = 0..n} (-1)^(k+n)*(k + 6)!*Stirling2(n,k)/
((k + 1)*(k + 2)). (End)
MAPLE
seq(add(i*(6 - i)^n, i = 1..5), n = 0..20); # Peter Bala, Jan 31 2017
MATHEMATICA
Table[2^(n + 2) + 2^(2 n + 1) + 3^(n + 1) + 5^n + 5, {n, 0, 25}] (* Bruno Berselli, Jan 27 2015 *)
LinearRecurrence[{15, -85, 225, -274, 120}, {15, 35, 105, 371, 1449}, 30] (* Harvey P. Dale, Jan 24 2022 *)
PROG
(PARI) Vec(-(1044*x^4-1604*x^3+855*x^2-190*x+15)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Jan 26 2015
STATUS
approved