login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210503
Numbers k that form a primitive Pythagorean triple with k' and sqrt(k^2 + k'^2), where k' is the arithmetic derivative of k.
7
15, 35, 143, 323, 899, 1763, 3599, 4641, 5183, 10403, 11663, 13585, 19043, 22499, 32399, 35581, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999, 381923, 412163, 435599, 446641, 622081, 656099, 675683
OFFSET
1,1
COMMENTS
A037074 is a subsequence of this sequence.
If k is the product of a pair of twin primes we have k=p(p+2), k'=2(p+1) and sqrt(k^2+k'^2)=(p+1)^2+1=p(p+2)+2=k+2. These numbers are relatively prime and therefore they form a primitive Pythagorean triple.
Also in the sequence are the following numbers with four distinct prime factors:
4641 = 3*7*13*17 [form p(p+4)*q(q+4)],
13585 = 5*11*13*19 [form p(p+6)*q(q+6)],
35581 = 7*13*17*23 [form p(p+6)*q(q+6)],
446641 = 13*17*43*47 [form p(p+4)*q(q+4)],
622081 = 17*23*37*43 [form p(p+6)*q(q+6)],
700321 = 19*29*31*41 [form p(p+10)*q(q+10)],
From Ray Chandler, Jan 25 2017: (Start)
24887581 = 47*53*97*103 [form p(p+6)*q(q+6)],
43518577 = 59*67*101*109 [form p(p+8)*q(q+8)],
115539901 = 83*97*113*127 [form p(p+14)*q(q+14)],
158682817 = 89*101*127*139 [form p(p+12)*q(q+12)],
305162941 = 103*113*157*167 [form p(p+10)*q(q+10)],
1093514641 = 103*107*313*317 [form p(p+4)*q(q+4)],
1415940061 = 167*193*197*223 [form p(p+26)*q(q+26)].
And one term with six distinct prime factors:
650344079 = 7*11*37*53*59*73. (End)
LINKS
Ray Chandler, Table of n, a(n) for n = 1..500 (terms 1..100 from Paolo P. Lava)
EXAMPLE
m=57599, m'=480, sqrt(57599^2 + 480^2) = 57601.
MAPLE
with(numtheory);
A210503:= proc(q)
local a, n, p;
for n from 1 to q do
a:=n*add(op(2, p)/op(1, p), p=ifactors(n)[2]);
if trunc(sqrt(n^2+a^2))=sqrt(n^2+a^2) and gcd(n, gcd(a, n^2+a^2))=1 then print(n); fi;
od; end:
A210503(100000);
PROG
(Python)
from sympy import factorint
from gmpy2 import mpz, is_square, gcd
A210503 = []
for n in range(2, 10**5):
....nd = sum([mpz(n*e/p) for p, e in factorint(n).items()])
....if is_square(nd**2+n**2) and gcd(gcd(n, nd), mpz(sqrt(nd**2+n**2))) == 1:
........A210503.append(n) # Chai Wah Wu, Aug 21 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jan 25 2013
STATUS
approved