login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194580
Nonprime numbers with a sum of nonprime divisors which is a perfect square.
1
1, 15, 35, 143, 243, 323, 465, 899, 1183, 1386, 1763, 2065, 2352, 3060, 3599, 3612, 3696, 3887, 5183, 5358, 5590, 9889, 10403, 11663, 12337, 12740, 12879, 14329, 14455, 14645, 16401, 19043, 19097, 20835, 22477, 22499, 22678, 23427, 25553
OFFSET
1,2
COMMENTS
If n is prime, the sum is equal to 1.
LINKS
FORMULA
{A018252(j): A023890(A018252(j)) in A000290}. - R. J. Mathar, Sep 06 2011
EXAMPLE
The divisors of 465 are {1, 3, 5, 15, 31, 93, 155, 465} and the sum of the nonprime divisors 1 + 15 + 93 + 155 + 465 = 729 = 27^2, hence 465 is in the sequence.
MAPLE
A023890 := proc(n) a := 0 ; for d in numtheory[divisors](n) do if not isprime(d) then a := a+d; end if; end do; a; end proc:
for n from 1 do if issqr(A023890(A018252(n))) then print(A018252(n)) ; end if;
end do: # R. J. Mathar, Sep 06 2011
MATHEMATICA
f[n_] := IntegerQ[Sqrt[Total[Select[Divisors[n], ! PrimeQ[#] &]]]]; Select[Range[25553], ! PrimeQ[#] && f[#] &] (* T. D. Noe, Sep 06 2011 *)
PROG
(PARI) isok(n) = !isprime(n) && issquare(sumdiv(n, d, d*(1-isprime(d)))); \\ Michel Marcus, Aug 25 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 29 2011
STATUS
approved