OFFSET
1,4
COMMENTS
Obviously a(n) < sigma(n) for all n > 1, where sigma(n) is the sum of divisors function (A000203). It thus follows that a(n) = 1 when n = 1 or n is prime. - Alonso del Arte, Mar 16 2013
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..20000 (terms 1..1000 from T. D. Noe)
Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), Article 01.2.1.
FORMULA
a(n) = A023891(n) + 1 (sum of composite divisors of n + 1). [Alonso del Arte, Oct 01 2008]
a(n) = Sum (a027750(n,k)*(1-A010051(a027750(n,k))): k=1..A000005(n)). - Reinhard Zumkeller, Apr 12 2014
L.g.f.: log(Product_{ k>0 } (1-x^prime(k))/(1-x^k)) = Sum_{ n>0 } (a(n)/n)*x^n. - Benedict W. J. Irwin, Jul 05 2016
a(n) = Sum_{d|n} d * (1 - [Omega(d) = 1]), where Omega is the number of prime factors with multiplicity (A001222) and [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
EXAMPLE
a(8) = 13 because the divisors of 8 are 1, 2, 4, 8, and without the 2 they add up to 13.
a(9) = 10 because the divisors of 9 are 1, 3, 9, and without the 3 they add up to 10.
MATHEMATICA
Array[ Plus @@ (Select[ Divisors[ # ], (!PrimeQ[ # ])& ])&, 75 ]
Table[DivisorSum[n, # &, Not[PrimeQ[#]] &], {n, 75}] (* Alonso del Arte, Mar 16 2013 *)
Table[CoefficientList[Series[Log[Product[(1 - x^Prime[k])/(1 - x^k), {k, 1, 100}]], {x, 0, 100}], x][[n + 1]] n, {n, 1, 100}] (* Benedict W. J. Irwin, Jul 05 2016 *)
a[n_] := DivisorSigma[1, n] - Plus @@ FactorInteger[n][[;; , 1]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
PROG
(PARI) a(n)=if(n<1, 0, sumdiv(n, d, !isprime(d)*d)) /* Michael Somos, Jun 08 2005 */
(Haskell)
a023890 n = sum $ zipWith (*) divs $ map ((1 -) . a010051) divs
where divs = a027750_row n
-- Reinhard Zumkeller, Apr 12 2014
(Python)
from sympy import isprime
def A023890(n):
s=0
for i in range(1, n+1):
if n%i==0 and not isprime(i):
s+=i
return s # Indranil Ghosh, Jan 30 2017
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved