login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonprime numbers with a sum of nonprime divisors which is a perfect square.
1

%I #27 Aug 25 2019 07:50:06

%S 1,15,35,143,243,323,465,899,1183,1386,1763,2065,2352,3060,3599,3612,

%T 3696,3887,5183,5358,5590,9889,10403,11663,12337,12740,12879,14329,

%U 14455,14645,16401,19043,19097,20835,22477,22499,22678,23427,25553

%N Nonprime numbers with a sum of nonprime divisors which is a perfect square.

%C If n is prime, the sum is equal to 1.

%H Amiram Eldar, <a href="/A194580/b194580.txt">Table of n, a(n) for n = 1..10000</a>

%F {A018252(j): A023890(A018252(j)) in A000290}. - _R. J. Mathar_, Sep 06 2011

%e The divisors of 465 are {1, 3, 5, 15, 31, 93, 155, 465} and the sum of the nonprime divisors 1 + 15 + 93 + 155 + 465 = 729 = 27^2, hence 465 is in the sequence.

%p A023890 := proc(n) a := 0 ; for d in numtheory[divisors](n) do if not isprime(d) then a := a+d; end if; end do; a; end proc:

%p for n from 1 do if issqr(A023890(A018252(n))) then print(A018252(n)) ; end if;

%p end do: # _R. J. Mathar_, Sep 06 2011

%t f[n_] := IntegerQ[Sqrt[Total[Select[Divisors[n], ! PrimeQ[#] &]]]]; Select[Range[25553], ! PrimeQ[#] && f[#] &] (* _T. D. Noe_, Sep 06 2011 *)

%o (PARI) isok(n) = !isprime(n) && issquare(sumdiv(n, d, d*(1-isprime(d)))); \\ _Michel Marcus_, Aug 25 2019

%Y Cf. A000290, A018252, A023890.

%K nonn

%O 1,2

%A _Michel Lagneau_, Aug 29 2011