login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194581
Primes prime(k) of the form (2*prime(k-1) + prime(k+1))/3.
2
3, 7, 13, 19, 43, 103, 109, 193, 229, 313, 349, 401, 463, 491, 509, 643, 743, 761, 823, 859, 883, 911, 997, 1093, 1237, 1279, 1303, 1429, 1459, 1483, 1489, 1499, 1571, 1609, 1637, 1831, 1873, 1999, 2003, 2069, 2083, 2221, 2239, 2243, 2251, 2269, 2273, 2399
OFFSET
1,1
COMMENTS
Primes prime(k) such that A062234(k) = A062234(k-1). - Thomas Ordowski, Jan 03 2016
Primes prime(k) such that A001223(k) = 2*A001223(k-1). - Robert Israel, Jan 03 2016
Or, primes which are at 1/3 of the distance between the previous and next prime. See A267291 for primes which are at 2/3 between their neighbors. - M. F. Hasler, Jan 12 2016
LINKS
EXAMPLE
a(1)=3 (=(2*2+5)/3), a(2)=7 (=(2*5+11)/3), a(3)=13 (=(2*11+17)/3).
MAPLE
Primes:= select(isprime, [2, seq(i, i=3..10^4, 2)]):
Gaps:= Primes[2..-1]-Primes[1..-2]:
Primes[select(t -> 2*Gaps[t-1] = Gaps[t], [$2..nops(Gaps)])]; # Robert Israel, Jan 03 2016
MATHEMATICA
Table[(2 Prime[k - 1] + Prime[k + 1])/3, {k, 2, 360}] /. {_Rational -> Nothing, n_ /; CompositeQ@ n -> Nothing} (* Michael De Vlieger, Jan 09 2016 *)
PROG
(PARI) for(k=2, 1000, q=2*prime(k-1)+prime(k+1); if(q%3==0 && isprime(q\3), print1(q\3, ", "))) \\ Colin Barker, Jun 27 2014
(PARI) A194581(n, show=0, o=2, g=0)={forprime(p=o+1, , g*2==(g=-o+o=p)||next; show&&print1(p-g", "); n--||return(p-g))} \\ 2nd & 3rd optional args allow printing the whole list and using another starting value. - M. F. Hasler, Jan 12 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Entries corrected by R. J. Mathar, Sep 30 2011
STATUS
approved