login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194583
Triangle T(n,k) with T(n,0)=1 and T(n,k) = (2^(n+1)-2^k)*T(n,k-1) + T(n+1,k-1) otherwise.
1
1, 1, 3, 1, 7, 43, 1, 15, 211, 2619, 1, 31, 931, 26251, 654811, 1, 63, 3907, 234795, 13255291, 662827803, 1, 127, 16003, 1985131, 238658491, 26961325147, 2699483026843, 1, 255, 64771, 16323819, 4050110011, 973958217435, 220115609012251, 44102911693372059, 1, 511, 260611, 132393451, 66733574971, 33115631264731, 15928113739803931, 7200501591899676571, 2886238576935227688091
OFFSET
0,3
LINKS
FORMULA
T(n,1) = A000225(n+1).
T(n,2) = (2^(n+1)-4)*(2^(n+1)-1) + 2^(n+2) - 1.
T(n,k) = -Sum_{j=1..k+1} A158474(k+1,j)*T(n-j,k) assuming the symmetric extension T(n,k) = T(k,n).
EXAMPLE
The triangle starts in row n=0 as
1;
1, 3;
1, 7, 43;
1, 15, 211, 2619;
1, 31, 931, 26251, 654811;
MAPLE
A194583 := proc(n, k) option remember; if n=0 or k=0 then 1; elif k> n then
return procname(k, n); else (2^(n+1)-2^k)*procname(n, k-1)+procname(n+1, k-1) ; end if;
end proc:
MATHEMATICA
t[_, 0] = 1; t[n_, k_] := t[n, k] = (2^(n+1)-2^k)*t[n, k-1]+t[n+1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)
CROSSREFS
Sequence in context: A348115 A282422 A282685 * A346784 A060487 A285020
KEYWORD
nonn,tabl
AUTHOR
R. J. Mathar, Aug 29 2011
STATUS
approved