login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194586
Triangle read by rows, T(n,k) the coefficients of the polynomials Sum_{k=0..n} binomial(n,k)*A056040(k)*(k mod 2)*q^k.
2
0, 0, 1, 0, 2, 0, 0, 3, 0, 6, 0, 4, 0, 24, 0, 0, 5, 0, 60, 0, 30, 0, 6, 0, 120, 0, 180, 0, 0, 7, 0, 210, 0, 630, 0, 140, 0, 8, 0, 336, 0, 1680, 0, 1120, 0, 0, 9, 0, 504, 0, 3780, 0, 5040, 0, 630, 0, 10, 0, 720, 0, 7560, 0, 16800, 0, 6300, 0, 0, 11, 0, 990, 0, 13860, 0, 46200, 0, 34650, 0, 2772, 0, 12
OFFSET
0,5
COMMENTS
Substituting q^k -> 1/(floor(k/2)+1) in the polynomials gives the complementary Motzkin numbers A005717. (See A089627 for the Motzkin numbers and A163649 for the extended Motzkin numbers.)
FORMULA
egf(x,y) = x*y*exp(x)*BesselI(0,2*x*y).
EXAMPLE
0
0, 1
0, 2, 0
0, 3, 0, 6
0, 4, 0, 24, 0
0, 5, 0, 60, 0, 30
0, 6, 0, 120, 0, 180, 0
0, 7, 0, 210, 0, 630, 0, 140
0
q
2 q
3 q + 6 q^3
4 q + 24 q^3
5 q + 60 q^3 + 30 q^5
6 q + 120 q^3 + 180 q^5
7 q + 210 q^3 + 630 q^5 + 140 q^7
MAPLE
A194586 := proc(n, k) local j, swing; swing := n -> n!/iquo(n, 2)!^2:
add(binomial(n, j)*swing(j)*q^j*(j mod 2), j=0..n); coeff(%, q, k) end:
seq(print(seq(A194586(n, k), k=0..n)), n=0..8);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2;
row[n_] := Sum[Binomial[n, j] sf[j] q^j Mod[j, 2], {j, 0, n}] // CoefficientList[#, q]& // PadRight[#, n+1]&;
Table[row[n], {n, 0, 12}] (* Jean-François Alcover, Jun 26 2019 *)
CROSSREFS
Row sums are A109188. Cf. A056040, A005717, A163649, A089627.
Sequence in context: A298203 A298209 A211871 * A288437 A287736 A180969
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 29 2011
STATUS
approved