login
A298203
Expansion of (1/q) * phi(-q) * phi(q^5) / (f(-q^4) * f(-q^20)) in powers of q where phi(), f() are Ramanujan theta functions.
2
1, -2, 0, 0, 3, 0, -4, 0, 4, 0, -4, 0, 7, 0, -12, 0, 13, 0, -16, 0, 22, 0, -28, 0, 38, 0, -44, 0, 55, 0, -72, 0, 83, 0, -104, 0, 129, 0, -156, 0, 187, 0, -220, 0, 273, 0, -328, 0, 384, 0, -452, 0, 539, 0, -652, 0, 757, 0, -880, 0, 1041, 0, -1220, 0, 1428, 0
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (1/q) * chi(q) * chi(-q)^3 * chi(q^5)^3 * chi(-q^5) in powers of q where chi() is a Ramanujan theta function.
Expansion of eta(q)^2 * eta(q^10)^5 / (eta(q^2) * eta(q^4)* eta(q^5)^2 * eta(q^20)^3) in powers of q.
Euler transform of period 20 sequence [-2, -1, -2, 0, 0, -1, -2, 0, -2, -4, -2, 0, -2, -1, 0, 0, -2, -1, -2, 0, ...].
a(2*n) = 0 except n=0. a(2*n + 1) = A058559(n) for all n in Z.
EXAMPLE
G.f. = q^-1 - 2 + 3*q^3 - 4*q^5 + 4*q^7 - 4*q^9 + 7*q^11 - 12*q^13 + 13*q^15 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^5] / (QPochhammer[ q^4] QPochhammer[ q^20]), {q, 0, n}];
a[ n_] := SeriesCoefficient[ 1/q QPochhammer[ -q, q^2] QPochhammer[ q, q^2]^3 QPochhammer[ -q^5, q^10]^3 QPochhammer[ q^5, q^10], {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^10 + A)^5 / (eta(x^2 + A) * eta(x^4 + A)* eta(x^5 + A)^2 * eta(x^20 + A)^3), n))};
CROSSREFS
Cf. A058559.
Sequence in context: A173539 A292250 A245492 * A298209 A211871 A194586
KEYWORD
sign
AUTHOR
Michael Somos, Jan 14 2018
STATUS
approved