login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298202
Number of Eulerian cycles in the n-Sierpinski sieve graph.
2
1, 16, 102400, 40823664148480000, 4024143600922674552523331296813921054228480000000000
OFFSET
1,2
COMMENTS
A level 1 Sierpiński triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles.
Different starting points and directions do not make two circuits distinct. - Allan Bickle, Aug 06 2024
a(6) has 157 decimal digits. - Andrew Howroyd, Sep 10 2019
LINKS
A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
Eric Weisstein's World of Mathematics, Eulerian Cycle
Eric Weisstein's World of Mathematics, Sierpinski Sieve Graph
EXAMPLE
3 example graphs: o
/ \
o---o
/ \ / \
o o---o---o
/ \ / \ / \
o o---o o---o o---o
/ \ / \ / \ / \ / \ / \ / \
o---o o---o---o o---o---o---o---o
Graph: S_1 S_2 S_3
A triangle has a single Eulerian circuit, so a(1) = 1.
The level 2 graph has 16 distinct circuits, 12 that reverse at a middle vertex and 4 that don't, so a(2) = 16.
MATHEMATICA
NestList[Function[{e, f, g}, {16 e^3 + 48 f e^2, 3 e^3 + (32 f + 8 g) e^2 + 56 f^2 e, e^3 + (30 f + 12 g) e^2 + (156 f^2 + 96 g f) e + 112 f^3}] @@ # &, {1, 0, 0}, 5][[All, 1]] (* Eric W. Weisstein, Feb 02 2024 based on code from Andrew Howroyd *)
PROG
(PARI)
P(u)={my([e, f, g]=u); [16*e^3 + 48*f*e^2, 3*e^3 + (32*f + 8*g)*e^2 + 56*f^2*e, e^3 + (30*f + 12*g)*e^2 + (156*f^2 + 96*g*f)*e + 112*f^3]}
a(n)={my(u=[1, 0, 0]); for(n=2, n, u=P(u)); u[1]} \\ Andrew Howroyd, Sep 12 2019
CROSSREFS
Cf. A007283, A029858, A067771, A193277, A233774, A233775, A246959 (Sierpiński triangle graphs).
Sequence in context: A308507 A144830 A278289 * A364777 A332090 A333863
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Jan 14 2018
EXTENSIONS
a(4)-a(5) from Andrew Howroyd, Sep 10 2019
STATUS
approved