The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278289 Number of standard Young tableaux of skew shape (2n-1,2n-2,...,2,1)/(n-1,n-2,..,2,1). 1
1, 1, 16, 101376, 1190156828672, 68978321274090930831360, 40824193474825703180733027309531955200, 440873872874088459550341319780612789503586208384381091840, 140992383930585613207663170866505518985873138480180692888967131590224605582721024 (list; graph; refs; listen; history; text; internal format)
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Corollary 7.16.3.
Alejandro H. Morales, Table of n, a(n) for n = 0..22
A. H. Morales, I. Pak and G. Panova, Asymptotics of the number of standard Young tableaux of skew shape, arXiv:1610.07561 [math.CO], 2016; European Journal of Combinatorics, Vol 70 (2018).
A. H. Morales, I. Pak and G. Panova, Hook formulas for skew shapes II. Combinatorial proofs and enumerative applications, arXiv:1610.04744 [math.CO], 2016; SIAM Journal of Discrete Mathematics, Vol 31 (2017).
A. H. Morales, I. Pak and M. Tassy, Asymptotics for the number of standard tableaux of skew shape and for weighted lozenge tilings, arXiv:1805.00992 [math.CO], 2018.
A. H. Morales and D. G. Zhu, On the Okounkov--Olshanski formula for standard tableaux of skew shapes, arXiv:2007.05006 [math.CO], 2020.
H. Naruse, Schubert calculus and hook formula, talk slides at 73rd Sém. Lothar. Combin., Strobl, Austria, 2014.
Jay Pantone, File with list of n, a(n) for n = 0..438 (warning: file size is 100MB)
a(n) = ((3*n^2-n)/2)!*det(1/(lambda[i]-mu[j]-i+j)!), where lambda = (2*n-1,2*n-2,...,1) and mu = (n-1,n-2,...,1,0...,0).
There is a constant c such that log(a(k)) = n*log(n)/2 + c*n + o(n) where n = k*(3*k-1)/2 goes to infinity and -0.2368 <= c <= -0.1648. [updated by Alejandro H. Morales, Aug 29 2020]
For n = 3 there are a(2) = 16 standard tableaux of shape (3,2,1)/(1).
a:=proc(k) local lam, mu;
lam:=[seq(2*k-i, i=1..2*k-1)];
mu:=[seq(k-i, i=1..k-1), seq(0, i=1..k)];
factorial(binomial(2*k, 2)-binomial(k, 2))*LinearAlgebra:-Determinant(Matrix(2*k-1, 2*k-1, (i, j)->`if`(lam[i]-mu[j]-i+j<0, 0, 1/factorial(lam[i]-mu[j]-i+j))));
end proc:
seq(a(n), n=0..5);
Cf. A005118; for even n the number of terms in Naruse hook length formula is given by A181119 (Corollary 8.1 in arXiv:1610.04744).
Sequence in context: A368326 A308507 A144830 * A298202 A364777 A332090

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 03:05 EDT 2024. Contains 374575 sequences. (Running on oeis4.)