login
A364777
a(n) = (n^2)!*(n!)^2/(2*n-1)!.
0
1, 16, 108864, 2391175987200, 615524208068689920000000, 4831082166102613213870122703257600000000, 2481336275198061145749280386508780674949224836628480000000000
OFFSET
1,2
COMMENTS
a(n) is the number of square matrices of size n, whose elements are a permutation of 1, 2, ..., n^2, having a saddle point.
LINKS
A. J. Goldman, The probability of a saddlepoint, The American Mathematical Monthly, 64, 10 (1957), pp. 729-730.
E. D. Thorp, The probability that a matrix has a saddle point, Information Sciences 19 2 (1979), 91-95.
CROSSREFS
Sequence in context: A144830 A278289 A298202 * A332090 A333863 A343245
KEYWORD
nonn
AUTHOR
Sela Fried, Aug 07 2023
STATUS
approved