|
|
A005118
|
|
Number of simple allowable sequences on 1..n containing the permutation 12...n.
(Formerly M2097)
|
|
19
|
|
|
1, 1, 1, 2, 16, 768, 292864, 1100742656, 48608795688960, 29258366996258488320, 273035280663535522487992320, 44261486084874072183645699204710400, 138018895500079485095943559213817088756940800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
For n >= 2 by the hook length formula a(n) is also the number of Young tableaux of size 1+2+...+(n-1) = n(n-1)/2 that correspond to the partition (1,2,...n-1), i.e. triangular Young tableaux. For example, when n=5 a(5)=768 and the shape of the tableau is xxxx / xxx / xx / x. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 04 2001
Also, a(n) is the degree of the symplectic Grassmannian, the projective variety of all maximal isotropic subspaces in a complex vector space of dimension 2n-2 with a symplectic form. See Hiller's paper. - Burt Totaro (b.totaro(AT)dpmms.cam.ac.uk), Oct 29 2002
Also, for n >= 2, a(n) is the number of maximal chains in the poset of Dyck paths ordered by inclusion. - Jennifer Woodcock (Jennifer.Woodcock(AT)ugdsb.on.ca), May 21 2008
a(n) is the number of minimal decompositions of the "flip" permutation n(n-1)..21 in terms of the n-1 standard Coxeter generators (i i+1) ("reduced decompositions", cf. Stanley). As such, it is also the number of positive n-strand braid words representing the Garside braid Delta(n) (the half-turn) (cf. Epstein's book, lemma 9.1.14). - Maxime Bourrigan, Apr 04 2011
For n >= 1, the normalized volume of the subpolytope of the Birkhoff polytope obtained by taking the convex hull of all (2n)x(2n) permutation matrices corresponding to alternating permutations that also avoid the pattern 123. - Robert Davis, Dec 04 2016
|
|
REFERENCES
|
D. B. A. Epstein with J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson and W. P. Thurston, Word Processing in Groups, Jones and Bartlett Publishers, Boston, MA, 1992. xii+330 pp.
J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 102.
G. Kreweras, Sur un problème de scrutin à plus de deux candidats, Publications de l'Institut de Statistique de l'Université de Paris, 26 (1981), 69-87.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Omer Angel, Alexander E. Holroyd, Dan Romik, and Balint Virag, Random Sorting Networks, arXiv preprint arXiv:0609538 [math.PR], 2006.
|
|
FORMULA
|
a(n) = C(n, 2)!/(1^{n-1} * 3^{n-2} *...* (2n-3)^1 ).
a(n) ~ sqrt(Pi) * n^(n^2/2-n/2+23/24) * exp(n^2/4-n/2+7/24) / (A^(1/2) * 2^(n^2-n/2-7/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Nov 13 2014
|
|
MAPLE
|
A005118 := proc(n) local i; binomial(n, 2)!/product( (2*i+1)^(n-i-1), i=0..n-2 ); end;
|
|
MATHEMATICA
|
Table[Binomial[n, 2]!/Product[(2*i + 1)^(n - i - 1), {i, 0, n - 2}], {n, 0, 10}] (* T. D. Noe, May 29 2012 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|