login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219272
Number A(n,k) of standard Young tableaux for partitions of n into distinct parts with largest part <= k; triangle A(n,k), k>=0, 0<=n<=k*(k+1)/2, read by columns.
7
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 5, 16, 1, 1, 1, 3, 4, 9, 25, 49, 70, 168, 768, 1, 1, 1, 3, 4, 10, 30, 63, 162, 372, 1506, 3300, 7887, 15015, 48048, 292864, 1, 1, 1, 3, 4, 10, 31, 69, 182, 525, 1911, 5115, 17347, 43758, 149721, 626769, 1946516, 4934930
OFFSET
0,7
COMMENTS
A(n,k) is defined for n,k >= 0. A(n,k) = 0 iff n > k*(k+1)/2 = A000217(k). The triangle contains only the nonzero terms. A(n,k) = A(n,n) for k>=n.
LINKS
Wikipedia, Young tableau
FORMULA
T(n,k) = Sum_{i=0..k} A219274(n,i).
EXAMPLE
A(3,2) = 2:
+------+ +------+
| 1 2 | | 1 3 |
| 3 .--+ | 2 .--+
+---+ +---+
A(3,3) = 3:
+------+ +------+ +---------+
| 1 2 | | 1 3 | | 1 2 3 |
| 3 .--+ | 2 .--+ +---------+
+---+ +---+
Triangle A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
. 1, 1, 1, 1, 1, 1, 1, 1, ...
. 1, 1, 1, 1, 1, 1, 1, ...
. 2, 3, 3, 3, 3, 3, 3, ...
. 3, 4, 4, 4, 4, 4, ...
. 5, 9, 10, 10, 10, 10, ...
. 16, 25, 30, 31, 31, 31, ...
. 49, 63, 69, 70, 70, ...
. 70, 162, 182, 189, 190, ...
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) local s; s:=i*(i+1)/2;
`if`(n=s, h([l[], seq(i-j, j=0..i-1)]), `if`(n>s, 0,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i-1, [l[], i]))))
end:
A:= (n, k)-> g(n, k, []):
seq(seq(A(n, k), n=0..k*(k+1)/2), k=0..7);
MATHEMATICA
h[l_] := With[{n=Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[ l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := g[n, i, l] = With[{s=i*(i+1)/2}, If[n==s, h[Join[l, Table[ i-j, {j, 0, i-1}]]], If[n>s, 0, g[n, i-1, l] + If[i>n, 0, g[n-i, i-1, Append[l, i]]]]]];
A[n_, k_] := g[n, k, {}];
Table[Table[A[n, k], {n, 0, k*(k+1)/2}], {k, 0, 7}] // Flatten (* Jean-François Alcover, Feb 29 2016, after Alois P. Heinz *)
CROSSREFS
Column heights are A000124.
Column sums give: A219273.
Diagonal gives: A218293.
Leftmost nonzero elements give A219339.
Column of leftmost nonzero element is A002024(n) for n>0.
T(A000217(n),n) = A005118(n+1).
Sequence in context: A307689 A299037 A173072 * A084097 A306684 A293991
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Nov 17 2012
STATUS
approved