login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293991
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(Sum_{j=1..k+1} binomial(k,j-1)*x^j/j).
9
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 9, 10, 1, 1, 1, 5, 16, 33, 26, 1, 1, 1, 6, 25, 76, 141, 76, 1, 1, 1, 7, 36, 145, 436, 651, 232, 1, 1, 1, 8, 49, 246, 1025, 2776, 3333, 764, 1, 1, 1, 9, 64, 385, 2046, 8245, 19384, 18369, 2620, 1, 1, 1, 10, 81
OFFSET
0,9
LINKS
FORMULA
E.g.f. of column k: exp(((1+x)^(k+1) - 1)/(k+1)).
A(0,k) = 1 and A(n,k) = (n-1)! * Sum_{j=1..min(k+1,n)} binomial(k,j-1)*A(n-j,k)/(n-j)! for n > 0.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
1, 4, 9, 16, 25, ...
1, 10, 33, 76, 145, ...
1, 26, 141, 436, 1025, ...
MATHEMATICA
A[0, _] = 1; A[n_, k_] := (n-1)!*Sum[Binomial[k, j-1]*A[n-j, k]/(n-j)!, {j, 1, Min[k+1, n]}];
Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
CROSSREFS
Columns k=0..5 give A000012, A000085, A049425, A049426, A049427, A049428.
Rows n=0-1 give A000012.
Main diagonal gives A294003.
Cf. A291709.
Sequence in context: A219272 A084097 A306684 * A288638 A261494 A365673
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 21 2017
STATUS
approved