login
A306684
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 - x + sqrt(1 - 2*x + (1-4*k)*x^2)).
4
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 7, 9, 1, 1, 1, 5, 10, 21, 21, 1, 1, 1, 6, 13, 37, 61, 51, 1, 1, 1, 7, 16, 57, 121, 191, 127, 1, 1, 1, 8, 19, 81, 201, 451, 603, 323, 1, 1, 1, 9, 22, 109, 301, 861, 1639, 1961, 835, 1
OFFSET
0,9
LINKS
FORMULA
A(n,k) is the coefficient of x^n in the expansion of 1/(n+1) * (1 + x + k*x^2)^(n+1).
A(n,k) = Sum_{j=0..floor(n/2)} k^j * binomial(n,j) * binomial(n-j,j)/(j+1) = Sum_{j=0..floor(n/2)} k^j * binomial(n,2*j) * A000108(j).
(n+2) * A(n,k) = (2*n+1) * A(n-1,k) - (1-4*k) * (n-1) * A(n-2,k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 4, 7, 10, 13, 16, 19, 22, ...
1, 9, 21, 37, 57, 81, 109, 141, ...
1, 21, 61, 121, 201, 301, 421, 561, ...
1, 51, 191, 451, 861, 1451, 2251, 3291, ...
1, 127, 603, 1639, 3445, 6231, 10207, 15583, ...
MATHEMATICA
T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, 2*j] * CatalanNumber[j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)
CROSSREFS
Main diagonal gives A307906.
Sequence in context: A173072 A219272 A084097 * A293991 A288638 A261494
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 06 2019
STATUS
approved