login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091147
Expansion of (1-x-sqrt(1-2x-15x^2))/(8x^2).
8
1, 1, 5, 13, 57, 201, 861, 3445, 14897, 63313, 278389, 1223069, 5465065, 24513945, 111037005, 505298565, 2314343265, 10645982625, 49202944485, 228253816365, 1062783893145, 4964167491945, 23256852644925, 109249893866133, 514494575459217, 2428488338526961
OFFSET
0,3
COMMENTS
a(n) = A014433(n+1)/4.
Number of lattice paths in the first quadrant from (0,0) to (n,0) using only steps H=(1,0), U=(1,1) and D=(1,-1), where the U steps come in 4 colors (i.e. Motzkin paths with the up steps in 4 colors). Series reversion of x/(1+x+4x^2). - Paul Barry, May 16 2005
LINKS
FORMULA
G.f.: 2/(1-x+sqrt(1-2x-15x^2)).
G.f.: exp( Sum_{n>=1} A084605(n) * x^n/n ). - Paul D. Hanna, Dec 08 2018
a(n) = sum{k=0..n, binomial(n, k)4^(k/2)C(k/2)(1+(-1)^k)/2}, C(n)=A000108(n).
a(n) = sum{k=0..n, C(n, 2k)C(k)4^k}. - Paul Barry, May 16 2005
a(n) = integral(x=-2..2, (2*x+1)^n*sqrt((2-x)*(2+x)))/(2*Pi). [Peter Luschny, Sep 11 2011]
a(n) = (2^n/(n+1))*[x^n] (1+x/2+x^2)^(n+1). [Emanuele Munarini, Apr 27 2012]
E.g.f.: a(n) = n! * [x^n] exp(x)*BesselI(1, 4*x)/(2*x). -Peter Luschny, Aug 25 2012
D-finite with recurrence: (n+2)*a(n) -(2*n+1)*a(n-1) +15*(1-n)*a(n-2)=0. - R. J. Mathar, Sep 26 2012, [corrected by Vaclav Kotesovec, Sep 29 2012]
a(n) ~ 5/8*sqrt(10)/(n^(3/2)*sqrt(Pi))*5^n. - Vaclav Kotesovec, Sep 29 2012
a(n) = hypergeom([-n/2, (1-n)/2], [2], 16). - Peter Luschny, May 28 2014
a(n) = 2^n*GegenbauerC(n,-n-1, -1/4)/(n+1). - Peter Luschny, May 08 2016
G.f.: 1/(1 - x - 4*x^2/(1 - x - 4*x^2/(1 - x - 4*x^2/(1 - x - 4*x^2/(1 - ....))))), a continued fraction. - Ilya Gutkovskiy, May 26 2017
MAPLE
a := n -> simplify(2^n*GegenbauerC(n, -n-1, -1/4)/(n+1)):
seq(a(n), n=0..25); # Peter Luschny, May 08 2016
MATHEMATICA
a[0] = 1; a[1] = 1; a[n_] := ((2*n + 1)*a[n - 1] - 15*(1 - n)*a[n - 2])/(n + 2); Table[a[n], {n, 0, 50}] (* T. D. Noe, Oct 02 2012 *)
CoefficientList[Series[(1 - x - Sqrt[1 - 2 x - 15 x^2]) / (8 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, May 10 2013 *)
a[n_] := Hypergeometric2F1[1/2 - n/2, -n/2, 2, 16];
Table[a[n], {n, 0, 25}] (* Peter Luschny, Mar 18 2018 *)
PROG
(Maxima) a(n):=2^n*coeff(expand((1+x/2+x^2)^(n+1)), x^n)/(n+1);
makelist(a(n), n, 0, 30); /* Emanuele Munarini, Apr 27 2012 */
(PARI) my(x='x+O('x^66)); Vec((1-x-sqrt(1-2*x-15*x^2))/(8*x^2)) \\ Joerg Arndt, May 11 2013
CROSSREFS
Sequence in context: A149551 A149552 A084136 * A351072 A149553 A149554
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 22 2003
STATUS
approved