login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091144
a(n) = binomial(n^2, n)/(1+(n-1)*n).
5
1, 1, 2, 12, 140, 2530, 62832, 1997688, 77652024, 3573805950, 190223180840, 11502251937176, 779092434772236, 58448142042957576, 4811642166029230560, 431306008583779517040, 41820546066482630185200
OFFSET
0,3
COMMENTS
Diagonal of array T(n,k) = binomial(kn,n)/(1+(k-1)n).
Number of paths up and left from (0,0) to (n^2-n,n) where x/y <= n-1 for all intermediate points. - Henry Bottomley, Dec 25 2003
Empirical: In the ring of symmetric functions over the fraction field Q(q, t), letting s(1^n) denote the Schur function indexed by (1^n), a(n) is equal to the coefficient of s(n) in nabla^(n)s(1^n) with q=t=1, where nabla denotes the "nabla operator" on symmetric functions, and s(n) denotes the Schur function indexed by the integer partition (n) of n. - John M. Campbell, Apr 06 2018
LINKS
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
FORMULA
From Henry Bottomley, Dec 25 2003: (Start)
a(n) = A014062(n)/A002061(n);
a(n) = A062993(n-2, n);
a(n) = A070914(n, n-1);
a(n) = A071201(n, n^2-n);
a(n) = A071201(n, n^2-n+1);
a(n) = A071202(n, n^2-n+1). (End)
MAPLE
A091144 := proc(n)
binomial(n^2, n)/(1+n*(n-1)) ;
end proc: # R. J. Mathar, Feb 14 2015
MATHEMATICA
Table[Binomial[n^2, n] / (n (n - 1) + 1), {n, 0, 20}] (* Vincenzo Librandi, Apr 07 2018 *)
PROG
(PARI) a(n) = binomial(n^2, n)/(n*(n-1)+1); \\ Altug Alkan, Apr 06 2018
(Magma) [Binomial(n^2, n)/(1+(n-1)*n): n in [0..20]]; // Vincenzo Librandi, Apr 07 2018
(GAP) List([0..20], n->Binomial(n^2, n)/(1+(n-1)*n)); # Muniru A Asiru, Apr 08 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Dec 22 2003
STATUS
approved