login
A091146
a(n) = ceiling((n - sqrt(n))^n).
1
1, 0, 1, 3, 16, 162, 2004, 29676, 511660, 10077696, 223416176, 5508996067, 149620408779, 4439426853025, 142915981606747, 4962277770372786, 184884258895036416, 7358499526831141011, 311624392527600238320, 13992684008957401915051, 664101403687644955591709
OFFSET
0,4
COMMENTS
Suggested by the discovery of Boris Alexeev in the year 2004 that a(6) = 2004.
LINKS
MAPLE
f:= n -> ceil((n-sqrt(n))^n):
map(f, [$0..40]); # Robert Israel, Dec 03 2017
MATHEMATICA
Join[{1}, Table[Ceiling[(n-Sqrt[n])^n], {n, 20}]] (* Harvey P. Dale, Jun 19 2016 *)
PROG
(PARI) a(n) = ceil((n - sqrt(n))^n); \\ Altug Alkan, Dec 04 2017
CROSSREFS
Sequence in context: A135753 A191959 A349591 * A350415 A277458 A172402
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 23 2004
STATUS
approved