login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091146
a(n) = ceiling((n - sqrt(n))^n).
1
1, 0, 1, 3, 16, 162, 2004, 29676, 511660, 10077696, 223416176, 5508996067, 149620408779, 4439426853025, 142915981606747, 4962277770372786, 184884258895036416, 7358499526831141011, 311624392527600238320, 13992684008957401915051, 664101403687644955591709
OFFSET
0,4
COMMENTS
Suggested by the discovery of Boris Alexeev in the year 2004 that a(6) = 2004.
LINKS
MAPLE
f:= n -> ceil((n-sqrt(n))^n):
map(f, [$0..40]); # Robert Israel, Dec 03 2017
MATHEMATICA
Join[{1}, Table[Ceiling[(n-Sqrt[n])^n], {n, 20}]] (* Harvey P. Dale, Jun 19 2016 *)
PROG
(PARI) a(n) = ceil((n - sqrt(n))^n); \\ Altug Alkan, Dec 04 2017
CROSSREFS
Sequence in context: A135753 A191959 A349591 * A350415 A277458 A172402
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 23 2004
STATUS
approved