|
|
A277458
|
|
E.g.f.: -1/(1-LambertW(-x)).
|
|
7
|
|
|
-1, 1, 0, 3, 16, 165, 2016, 30415, 539904, 11049129, 256038400, 6627314331, 189517916160, 5933803272397, 201893195083776, 7417376809230375, 292648536838045696, 12341039738944113105, 553942486234823786496, 26369048375194607316019, 1326864458454400696320000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ n^(n-1) / 4.
a(n) = n!*Sum_{k = 1..n} (-1)^(k+1)*k*n^(n-k-1)/(n-k)! for n >= 1. Cf. A133297. - Peter Bala, Jul 23 2021
|
|
MAPLE
|
seq(n!*add((-1)^(k+1)*k*n^(n-k-1)/(n-k)!, k = 1..n), n = 1..20); # Peter Bala, Jul 23 2021
|
|
MATHEMATICA
|
CoefficientList[Series[-1/(1-LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
|
|
PROG
|
(PARI) my(x='x+O('x^50)); Vec(serlaplace(-1/(1 - lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|