|
|
A308506
|
|
Expansion of e.g.f.: -1/(1-LambertW(-2*x)).
|
|
3
|
|
|
-1, 2, 0, 24, 256, 5280, 129024, 3893120, 138215424, 5657154048, 262183321600, 13572739749888, 776265384591360, 48609716407476224, 3307818108252585984, 243052603284860928000, 19179014510218162733056, 1617564760662882792898560, 145212699111541646687207424
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ 2^(n-2) * n^(n-1).
|
|
MAPLE
|
de:= diff(y(x), x) = x*y(x)^3/(1-2*x*y(x)):
S:= rhs(dsolve({de, y(0)=2}, y(x), series, order=40)):
-1, seq(coeff(S, x, i)*(i+1)!, i=0..39); # Robert Israel, Apr 13 2020
|
|
MATHEMATICA
|
CoefficientList[Series[-1/(1-LambertW[-2*x]), {x, 0, 20}], x] * Range[0, 20]!
|
|
PROG
|
(PARI) my(x='x+O('x^20)); Vec(serlaplace(-1/(1-lambertw(-2*x)))) \\ Michel Marcus, Apr 13 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|