|
|
A255162
|
|
Rational part of circle radii in nested circles and hexagons (see comment).
|
|
3
|
|
|
2, 0, 24, -288, 3744, -48384, 625536, -8087040, 104550912, -1351655424, 17474476032, -225913577472, 2920656642048, -37758842634240, 488153991315456, -6310954007396352, 81589295984541696, -1054802999903256576, 13636707550653579264
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Inspired by Vitruvian Man, but using hexagons instead of squares, starting with a hexagon whose sides are of length 4 (in some units). The radius of the circle is an integer in the real quadratic number field Q(sqrt(3)), namely R(n) = A(n) + B(n)*sqrt(3) with A(0)=2, A(n) = a(n), and B(0) = 1, B(n) = A255163(n). See illustrations in the links.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = -12*a(n-1) + 12*a(n-2).
G.f.: -2*(12*x+1) / (12*x^2 - 12*x - 1).
(End)
|
|
PROG
|
(PARI){a=2; b=1; print1(a, ", "); for(n=1, 30, c=12*b-6*a; d=4*a-6*b; print1(c, ", "); a=c; b=d)}
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|