|
|
A360643
|
|
a(n) is the least A000120-perfect number (A175522) whose binary weight (A000120) is n, or 0 if no such number exists.
|
|
0
|
|
|
2, 0, 25, 169, 841, 95, 247, 943, 767, 5999, 6139, 16123, 30655, 90109, 122847, 245695, 522237, 1572591, 1966015, 3932095, 12582651, 28311519, 33423343, 100663023, 133693435, 402128831, 931135479, 1069547515, 1610612607, 11802771447, 12884901567, 25736249279
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Apparently, the sequence is increasing after n = 6.
|
|
LINKS
|
|
|
EXAMPLE
|
a(2) = 0 since there is no number m with binary weight 2 and with A093653(m) = 4.
a(3) = 25 since A000120(25) = 3 and A093653(25)/A000120(25) = 6/3 = 2, and 25 is the least number with this property.
|
|
MATHEMATICA
|
seq[len_, nmax_] := Module[{s = Table[-1, {len}], n = 3, c = 2, bw, dbw}, s[[1]] = 2; While[c < len && n <= nmax, bw = DigitCount[n, 2, 1]; If[bw <= len && s[[bw]] < 0, dbw = DivisorSum[n, DigitCount[#, 2, 1] &]; If[dbw == 2*bw, c++; s[[bw]] = n]]; n += 2]; s]; seq[16, 10^6]
|
|
PROG
|
(PARI) lista(len, nmax) = {my(s = vector(len, i, -1), n = 3, c = 2, bw, dbw); s[1] = 2; while(c < len && n <= nmax, bw = hammingweight(n); if(bw <= len && s[bw] < 0, dbw = sumdiv(n, d, hammingweight(d)); if(dbw == 2*bw, c++; s[bw] = n)); n += 2); s};
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|