|
|
A277457
|
|
E.g.f.: exp(2*x)/(1+LambertW(-x)).
|
|
3
|
|
|
1, 3, 12, 71, 616, 7197, 105052, 1829291, 36922928, 846851993, 21744781684, 617832652527, 19242299657896, 651815827343189, 23857403245171724, 938247816632341043, 39455261828928309088, 1766645684585351990961, 83913998998426051745764, 4214295288128637488870327, 223120214856875472660345176
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ exp(2*exp(-1)) * n^n.
|
|
MATHEMATICA
|
CoefficientList[Series[Exp[2*x]/(1+LambertW[-x]), {x, 0, 20}], x]*Range[0, 20]!
Table[1 + Sum[Binomial[n, m]*(1 + Sum[Binomial[m, k]*k^k, {k, 1, m}]), {m, 1, n}], {n, 0, 20}]
Table[2^n + Sum[Binomial[n, k]*2^(n-k)*k^k, {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 28 2016 *)
|
|
PROG
|
(PARI) x='x+O('x^50); Vec(serlaplace(exp(2*x)/(1 + lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|