|
|
A062993
|
|
A triangle (lower triangular matrix) composed of Pfaff-Fuss (or Raney) sequences.
|
|
16
|
|
|
1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 12, 4, 1, 1, 42, 55, 22, 5, 1, 1, 132, 273, 140, 35, 6, 1, 1, 429, 1428, 969, 285, 51, 7, 1, 1, 1430, 7752, 7084, 2530, 506, 70, 8, 1, 1, 4862, 43263, 53820, 23751, 5481, 819, 92, 9
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
The column sequences (without leading zeros) appear in eq.(7.66), p. 347 of the Graham et al. reference, in Th. 0.3, p. 66, of Hilton and Pedersen reference, as first columns of the S-triangles in the Hoggatt and Bicknell reference and in eq. 5 of the Frey and Sellers reference. They are also called m-Raney (here m=k+2) or Fuss-Catalan sequences (see Graham et al. for reference). For the history and the name Pfaff-Fuss see Brown reference, p. 975. PF(n,m) := binomial(m*n+1,n)/(m*n+1), m >= 2.
Also called generalized Catalan numbers.
|
|
REFERENCES
|
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.
|
|
LINKS
|
Table of n, a(n) for n=0..52.
O. Aichholzer, A. Asinowski, T. Miltzow, Disjoint compatibility graph of non-crossing matchings of points in convex position, arXiv preprint arXiv:1403.5546, 2014
Jean-Christophe Aval, Multivariate Fuss-Catalan numbers, arXiv:0711.0906 [math.CO].
C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps
W. G. Brown, Historical note on a recurrent combinatorial problem, Am. Math. Monthly 72 (1965) 973-977.
Caracciolo, Sergio; Sportiello, Andrea,Spanning forests on random planar lattices, J. Stat. Phys. 135, No. 5-6, 1063-1104 (2009).
M. Dziemianczuk, Enumerations of plane trees with multiple edges and Raney lattice paths, Discrete Mathematics 337 (2014): 9-24.
D.D. Frey and J. A. Sellers, Generalizing Bailey's generalization of the Catalan numbers, The Fibonacci Quarterly, 39 (2001) 142-148.
P. Hilton and J. Pedersen, Catalan Numbers, their generalization and their uses, The Mathematical Intelligencer 13 (1991) 64-75.
V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
V. U. Pierce, Combinatoric results for graphical enumeration and the higher Catalan numbers, arXiv:math/0703160 [math.CO], 2007.
J. H. Przytycki and A. S. Sikora, Polygon dissections and Euler, Fuss, Kirkman and Cayley numbers, arXiv:math/9811086 [math.CO], 1998.
H. S. Snevily and D. B. West, The Bricklayer Problem and the Strong Cycle Lemma, arXiv:math/9802026 [math.CO], 1998.
Donovan Young, Polyomino matchings in generalised games of memory and linear k-chord diagrams, arXiv:2004.06921 [math.CO], 2020. See also J. Int. Seq., Vol. 23 (2020), Article 20.9.1.
|
|
FORMULA
|
a(n, k)= binomial((k+2)*(n-k), n-k)/((k+1)*(n-k)+1) = PF(n-k, k+2) if n-k >= 0, otherwise 0.
G.f. for column k: A(k, x) := x^k*RootOf(_Z^(k+2)*x-_Z+1) (Maple notation, from ECS, see links for column sequences and Graham et al. reference eq.(5.59) p. 200 and p. 349).
|
|
EXAMPLE
|
The triangle a(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: 2 1 1
3: 5 3 1 1
4: 14 12 4 1 1
5: 42 55 22 5 1 1
6: 132 273 140 35 6 1 1
7: 429 1428 969 285 51 7 1 1
8: 1430 7752 7084 2530 506 70 8 1 1
9: 4862 43263 53820 23751 5481 819 92 9 1 1
10: 16796 246675 420732 231880 62832 10472 1240 117 10 1 1
... Reformatted by Wolfdieter Lang, Feb 06 2020
|
|
MATHEMATICA
|
a[n_, k_] = Binomial[(k+2)*(n-k), n-k]/((k+1)*(n-k) + 1);
Flatten[Table[a[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 53]]
(* Jean-François Alcover, May 27 2011, after formula *)
|
|
CROSSREFS
|
Reflected version of A070914.
Columns k=0..9 (without leading zeros) give sequences A000108 (Catalan), A001764, A002293, A002294, A002295, A002296, A007556, A062994, A059968, A230388.
Sequence in context: A340561 A097615 A288386 * A105556 A078920 A186020
Adjacent sequences: A062990 A062991 A062992 * A062994 A062995 A062996
|
|
KEYWORD
|
nonn,easy,tabl
|
|
AUTHOR
|
Wolfdieter Lang, Jul 12 2001
|
|
STATUS
|
approved
|
|
|
|