OFFSET
0,4
COMMENTS
The column sequences (without leading zeros) appear in eq.(7.66), p. 347 of the Graham et al. reference, in Th. 0.3, p. 66, of Hilton and Pedersen reference, as first columns of the S-triangles in the Hoggatt and Bicknell reference and in eq. 5 of the Frey and Sellers reference. They are also called m-Raney (here m=k+2) or Fuss-Catalan sequences (see Graham et al. for reference). For the history and the name Pfaff-Fuss see Brown reference, p. 975. PF(n,m) := binomial(m*n+1,n)/(m*n+1), m >= 2.
Also called generalized Catalan numbers.
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.
LINKS
O. Aichholzer, A. Asinowski, and T. Miltzow, Disjoint compatibility graph of non-crossing matchings of points in convex position, arXiv preprint arXiv:1403.5546 [math.CO], 2014.
Jean-Christophe Aval, Multivariate Fuss-Catalan numbers, arXiv:0711.0906 [math.CO], 2007.
C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps
W. G. Brown, Historical note on a recurrent combinatorial problem, Am. Math. Monthly 72 (1965) 973-977.
Sergio Caracciolo and Andrea Sportiello, Spanning forests on random planar lattices, J. Stat. Phys. 135, No. 5-6, 1063-1104 (2009).
CombOS - Combinatorial Object Server, Generate k-ary trees and dissections
M. Dziemianczuk, Enumerations of plane trees with multiple edges and Raney lattice paths, Discrete Mathematics 337 (2014): 9-24.
D. D. Frey and J. A. Sellers, Generalizing Bailey's generalization of the Catalan numbers, The Fibonacci Quarterly, 39 (2001) 142-148.
P. Hilton and J. Pedersen, Catalan Numbers, their generalization and their uses, The Mathematical Intelligencer 13 (1991) 64-75.
V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
V. U. Pierce, Combinatoric results for graphical enumeration and the higher Catalan numbers, arXiv:math/0703160 [math.CO], 2007.
J. H. Przytycki and A. S. Sikora, Polygon dissections and Euler, Fuss, Kirkman and Cayley numbers, arXiv:math/9811086 [math.CO], 1998.
H. S. Snevily and D. B. West, The Bricklayer Problem and the Strong Cycle Lemma, arXiv:math/9802026 [math.CO], 1998.
Donovan Young, Linear k-Chord Diagrams, arXiv:2004.06921 [math.CO], 2020. See also J. Int. Seq., Vol. 23 (2020), Article 20.9.1.
FORMULA
a(n, k) = binomial((k+2)*(n-k), n-k)/((k+1)*(n-k)+1) = PF(n-k, k+2) if n-k >= 0, otherwise 0.
G.f. for column k: A(k, x) := x^k*RootOf(_Z^(k+2)*x-_Z+1) (Maple notation, from ECS, see links for column sequences and Graham et al. reference eq.(5.59) p. 200 and p. 349).
EXAMPLE
The triangle a(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1 1
2: 2 1 1
3: 5 3 1 1
4: 14 12 4 1 1
5: 42 55 22 5 1 1
6: 132 273 140 35 6 1 1
7: 429 1428 969 285 51 7 1 1
8: 1430 7752 7084 2530 506 70 8 1 1
9: 4862 43263 53820 23751 5481 819 92 9 1 1
10: 16796 246675 420732 231880 62832 10472 1240 117 10 1 1
... Reformatted by Wolfdieter Lang, Feb 06 2020
MATHEMATICA
a[n_, k_] = Binomial[(k+2)*(n-k), n-k]/((k+1)*(n-k) + 1);
Flatten[Table[a[n, k], {n, 0, 9}, {k, 0, n}]][[1 ;; 53]]
(* Jean-François Alcover, May 27 2011, after formula *)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Jul 12 2001
STATUS
approved