login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062994
Eighth column of triangle A062993 (without leading zeros). A Pfaff-Fuss or 9-Raney sequence.
19
1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, 3573805950, 70625252863, 1416298046436, 28748759731965, 589546754316126, 12195537924351375, 254184908607118800, 5332692942907262361
OFFSET
0,3
COMMENTS
See Graham et al., Hilton and Pedersen, Hoggat and Bicknell, Frey and Sellers references given in A062993.
Essentially the same as A059967. a(n), n>=1, enumerates 9-ary trees (rooted, ordered, incomplete) with n vertices (including the root).
These numbers appear in a formula on p. 24 of Gross et al. for b = -2 or 4. For b = -1 or 3, see A002293.- Tom Copeland, Dec 24 2019
This is instance k = 9 of the generalized Catalan family {C(k, n)}_{n>=0} given in a comment of A130564. - Wolfdieter Lang, Feb 05 2024
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem. 211, p. 146 with solution on p. 348.
LINKS
M. Gross, P. Hacking, S. Keel, and M. Kontsevich, Canonical bases for cluster algebras, arXiv preprint arXiv:1411.1394 [math.AG], 2016.
FORMULA
a(n) = A062993(n+7, 7) = binomial(9*n, n)/(8*n+1).
G.f.: RootOf((_Z^9)*x-_Z+1) (Maple notation, from ECS, see links for A007556).
Recurrence: a(0) = 1; a(n) = Sum_{i1+i2+..+i9=n-1} a(i1)*a(i2)*...*a(i9) for n>=1. - Robert FERREOL, Apr 01 2015
From Ilya Gutkovskiy, Jan 16 2017: (Start)
O.g.f.: 8F7(1/9,2/9,1/3,4/9,5/9,2/3,7/9,8/9; 1/4,3/8,1/2,5/8,3/4,7/8,9/8; 387420489*x/16777216).
E.g.f.: 8F8(1/9,2/9,1/3,4/9,5/9,2/3,7/9,8/9; 1/4,3/8,1/2,5/8,3/4,7/8,1,9/8; 387420489*x/16777216).
a(n) ~ 3^(18*n+1)/(sqrt(Pi)*2^(24*n+5)*n^(3/2)). (End)
D-finite with recurrence: 128*n*(8*n-5)*(4*n-1)*(8*n+1)*(2*n-1)*(8*n-1)*(4*n-3)*(8*n-3)*a(n) -81*(9*n-7)*(9*n-5)*(3*n-1)*(9*n-1)*(9*n-8)*(3*n-2)*(9*n-4)*(9*n-2)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
EXAMPLE
There are a(2)=9 9-ary trees (vertex degree <=9 and 9 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 9 trees yields 9*9 + binomial(9,2) = 117 = a(3) such trees.
MAPLE
seq(binomial(9*k+1, k)/(8*k+1), k=0..30);
n:=30: G:=series(RootOf(g = 1+x*g^9, g), x=0, n+1): seq(coeff(G, x, k), k=0..n); # Robert FERREOL, Apr 01 2015
MATHEMATICA
Table[Binomial[9n, n]/(8n+1), {n, 0, 30}] (* Harvey P. Dale, Oct 28 2012 *)
PROG
(PARI) { for (n=0, 100, write("b062994.txt", n, " ", binomial(9*n, n)/(8*n + 1)) ) } \\ Harry J. Smith, Aug 15 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 12 2001
EXTENSIONS
9-ary tree comments and Pólya and G. Szegő reference from Wolfdieter Lang, Sep 14 2007
STATUS
approved