login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230388
a(n) = binomial(11*n+1,n)/(11*n+1).
16
1, 1, 11, 176, 3311, 68211, 1489488, 33870540, 793542167, 19022318084, 464333035881, 11502251937176, 288417894029200, 7306488667126803, 186719056586568660, 4807757550367267056, 124609430032127192295, 3248403420844673986345
OFFSET
0,3
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=1. Interesting property when r=1, a(n+1,p,1) = a(n,p,p) for n>=0.
This is also instance k = 10 of the generalized Catalan family {C(k, n)}_{n>=0} given in a comment of A130564. - Wolfdieter Lang, Feb 05 2024
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2008.
J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962, 2014
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=1.
From Robert FERREOL, Apr 01 2015: (Start)
a(n) = binomial(11*n,n)/(10*n+1) = A062993(n+9, 9).
a(0) = 1; a(n) = Sum_{i1+i2+..i11=n-1} a(i1)*a(i2)*...*a(i11) for n>=1.
(End)
O.g.f.: hypergeometric([1,...,10]/11,[2,...,9,11]/10,(11^11/10^10)*x). For the e.g.f. put an extra 1 = 10/10 into the second part. - Wolfdieter Lang, Feb 05 2024
a(n) ~ (11^11/10^10)^n*sqrt(11/(2*Pi*(10*n)^3)). - Robert A. Russell, Jul 15 2024
MAPLE
seq(binomial(11*k+1, k)/(11*k+1), k=0..30); # Robert FERREOL, Apr 01 2015
n:=30:G:=series(RootOf(g = 1+x*g^11, g), x=0, n+1):seq(coeff(G, x, k), k=0..n); # Robert FERREOL, Apr 01 2015
MATHEMATICA
Table[Binomial[11 n + 1, n]/(11 n + 1), {n, 0, 30}] (* Vincenzo Librandi, Jan 01 2014 *)
PROG
(PARI) a(n) = binomial(11*n+1, n)/(11*n+1);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11))+x*O(x^n)); polcoeff(B, n)}
(Magma) [Binomial(11*n+1, n)/(11*n+1): n in [0..30]]; // Vincenzo Librandi, Jan 01 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tim Fulford, Jan 01 2014
STATUS
approved