The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A234868 a(n) = 2*binomial(11*n+2,n)/(11*n+2). 10
 1, 2, 23, 374, 7095, 146916, 3219216, 73386170, 1722567143, 41352865400, 1010607195741, 25058477434562, 628845572227600, 15941429819185752, 407626109449551300, 10501154649486399096, 272294680440574235015, 7101160966497659412010, 186134223613500403098396 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=2; also, g.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Jean-Christophe Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669. Thomas A. Dowling, Catalan Numbers Chapter 7 Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955. FORMULA a(n) = 2*binomial(11*n+1,n-1)/n for n>0, a(0)=1. [Bruno Berselli, Jan 19 2014] MATHEMATICA Table[2 Binomial[11 n + 2, n]/(11 n + 2), {n, 0, 30}] (* Vincenzo Librandi, Jan 01 2014 *) PROG (PARI) a(n) = 2*binomial(11*n+2, n)/(11*n+2) for(n=0, 20, print(a(n))) \\ Sequence (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/2))^2+x*O(x^n)); polcoeff(B, n)} for (n=0, 20, print(a(n))) \\ Generating Function (Magma) [2*Binomial(11*n+2, n)/(11*n+2): n in [0..30]]; // Vincenzo Librandi, Jan 01 2014 (Sage) [2*binomial(11*n+2, n)/(11*n+2) for n in range(20)] # F. Chapoton; Apr 29 2020 CROSSREFS Cf. A230388, A234869, A234870, A234871, A234872, A234873. Sequence in context: A211925 A277830 A197740 * A239109 A266923 A060941 Adjacent sequences: A234865 A234866 A234867 * A234869 A234870 A234871 KEYWORD nonn AUTHOR Tim Fulford, Jan 01 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 14:51 EST 2022. Contains 358695 sequences. (Running on oeis4.)