login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234871
a(n) = 5*binomial(11*n+5,n)/(11*n+5).
9
1, 5, 65, 1110, 21620, 455126, 10085845, 231814440, 5475346305, 132090011900, 3240886705386, 80621405042750, 2028732009726240, 51548408940061460, 1320738410528418175, 34083616545621832176, 885134579074202142075, 23114512490211287029665
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=11, r=5.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, with p=11, r=5.
MATHEMATICA
Table[5 Binomial[11 n + 5, n]/(11 n + 5), {n, 0, 40}] (* Vincenzo Librandi, Jan 01 2014 *)
PROG
(PARI) a(n) = 5*binomial(11*n+5, n)/(11*n+5);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(11/5))^5+x*O(x^n)); polcoeff(B, n)}
(Magma) [5*Binomial(11*n+5, n)/(11*n+5): n in [0..30]]; // Vincenzo Librandi, Jan 01 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Tim Fulford, Jan 01 2014
STATUS
approved