login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249930
G.f. A(x) satisfies: 1+x = A(x)^2 + A(x)^6 - A(x)^7.
7
1, 1, 5, 65, 1020, 17915, 336881, 6634391, 135085305, 2820748975, 60074608660, 1299896748546, 28496343865808, 631545920570632, 14126673078922850, 318514279669755470, 7231331734648562366, 165172699475903928921, 3793005825337785580290, 87518313783310367308770
OFFSET
0,3
LINKS
FORMULA
G.f.: 1 + Series_Reversion(x - 5*x^2 - 15*x^3 - 20*x^4 - 15*x^5 - 6*x^6 - x^7).
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 65*x^3 + 1020*x^4 + 17915*x^5 + ...
Related expansions.
A(x)^2 = 1 + 2*x + 11*x^2 + 140*x^3 + 2195*x^4 + 38520*x^5 + ...
A(x)^6 = 1 + 6*x + 45*x^2 + 560*x^3 + 8760*x^4 + 153546*x^5 + ...
A(x)^7 = 1 + 7*x + 56*x^2 + 700*x^3 + 10955*x^4 + 192066*x^5 + ...
where 1+x = A(x)^2 + A(x)^6 - A(x)^7.
MAPLE
S:= series(RootOf(1+x-(y^2+y^6-y^7), y, 1), x, 26):
seq(coeff(S, x, i), i=0..25); # Robert Israel, Mar 22 2023
PROG
(PARI) /* From 1+x = A(x)^2 + A(x)^6 - A(x)^7: */
{a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(Ser(A)^2+Ser(A)^6-Ser(A)^7)[#A]); A[n+1]}
for(n=0, 25, print1(a(n) , ", "))
(PARI) /* From Series Reversion: */
{a(n)=local(A=1+serreverse(x - 5*x^2 - 15*x^3 - 20*x^4 - 15*x^5 - 6*x^6 - x^7 + x^2*O(x^n))); polcoeff(A, n)}
for(n=0, 25, print1(a(n) , ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2014
STATUS
approved