login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249929
G.f. A(x) satisfies: 1+x = A(x)^3 + A(x)^4 - A(x)^6.
6
1, 1, 6, 87, 1544, 30669, 652387, 14535220, 334846575, 7911062633, 190635605270, 4667362377021, 115772752576351, 2903222873038115, 73481220638826204, 1874686187998433232, 48159602555272931592, 1244712958804985611455, 32343121686417402278602, 844434166911645229308309
OFFSET
0,3
FORMULA
G.f.: 1 + Series_Reversion(x - 6*x^2 - 15*x^3 - 14*x^4 - 6*x^5 - x^6).
EXAMPLE
G.f.: A(x) = 1 + x + 6*x^2 + 87*x^3 + 1544*x^4 + 30669*x^5 +...
Related expansions.
A(x)^3 = 1 + 3*x + 21*x^2 + 298*x^3 + 5280*x^4 + 104772*x^5 +...
A(x)^4 = 1 + 4*x + 30*x^2 + 424*x^3 + 7509*x^4 + 148968*x^5 +...
A(x)^6 = 1 + 6*x + 51*x^2 + 722*x^3 + 12789*x^4 + 253740*x^5 +...
where 1+x = A(x)^3 + A(x)^4 - A(x)^6.
PROG
(PARI) /* From 1+x = A(x)^3 + A(x)^4 - A(x)^6: */
{a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(Ser(A)^3+Ser(A)^4-Ser(A)^6)[#A]); A[n+1]}
for(n=0, 25, print1(a(n) , ", "))
(PARI) /* From Series Reversion: */
{a(n)=local(A=1+serreverse(x - 6*x^2 - 15*x^3 - 14*x^4 - 6*x^5 - x^6 + x^2*O(x^n))); polcoeff(A, n)}
for(n=0, 25, print1(a(n) , ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2014
STATUS
approved