login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249926
G.f. A(x) satisfies: 1+x = A(x)^2 + A(x)^4 - A(x)^5.
6
1, 1, 3, 24, 229, 2449, 28035, 336100, 4165920, 52953884, 686517601, 9042628374, 120669757468, 1627932844657, 22166277534398, 304230231637560, 4204474770868230, 58458984141770754, 817176088436608178, 11477568712206346244, 161897000202383717334, 2292445680627209103645
OFFSET
0,3
FORMULA
G.f.: 1 + Series_Reversion(x - 3*x^2 - 6*x^3 - 4*x^4 - x^5).
G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(6*n) * Product_{k=1..n} (1 - 1/A(x)^(3*k-2)).
G.f. A(x) satisfies: x = Sum_{n>=1} 1/A(x)^(n*(3*n-1)/2+6*n)) * Product_{k=1..n} (A(x)^(3*k-2) - 1).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 24*x^3 + 229*x^4 + 2449*x^5 + 28035*x^6 +...
The g.f. satisfies:
x = (A(x)-1)/A(x)^7 + (A(x)-1)*(A(x)^4-1)/A(x)^17 + (A(x)-1)*(A(x)^4-1)*(A(x)^7-1)/A(x)^30 + (A(x)-1)*(A(x)^4-1)*(A(x)^7-1)*(A(x)^10-1)/A(x)^46 +
(A(x)-1)*(A(x)^4-1)*(A(x)^7-1)*(A(x)^10-1)*(A(x)^13-1)/A(x)^65 +...
Related expansions.
A(x)^2 = 1 + 2*x + 7*x^2 + 54*x^3 + 515*x^4 + 5500*x^5 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 136*x^3 + 1295*x^4 + 13816*x^5 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 190*x^3 + 1810*x^4 + 19316*x^5 +...
where 1+x = A(x)^2 + A(x)^4 - A(x)^5.
PROG
(PARI) /* From 1+x = A(x)^2 + A(x)^4 - A(x)^5: */
{a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(Ser(A)^2+Ser(A)^4-Ser(A)^5)[#A]); A[n+1]}
for(n=0, 25, print1(a(n) , ", "))
(PARI) /* From Series Reversion: */
{a(n)=local(A=1+serreverse(x - 3*x^2 - 6*x^3 - 4*x^4 - x^5 + x^2*O(x^n))); polcoeff(A, n)}
for(n=0, 25, print1(a(n) , ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2014
STATUS
approved