login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249924
G.f. A(x) satisfies: x = A(x) - 3*A(x)^2 + A(x)^3.
7
1, 3, 17, 120, 948, 8022, 71106, 651717, 6126175, 58736535, 572178165, 5647102500, 56345894052, 567444190680, 5760259701864, 58879552102416, 605508278430348, 6260413541738610, 65036607553643550, 678530086525374930, 7106457298203380370, 74688269331406258260, 787463653336202248380
OFFSET
1,2
LINKS
Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
G.f.: Series_Reversion(x - 3*x^2 + x^3).
G.f. A(x) satisfies:
(1) 1/x = Sum_{n>=1} Fibonacci(2*n) * A(x)^(n-2).
(2) 1+x = 2*(1-A(x)) - (1-A(x))^3.
(3) 5+x = 10*(1+A(x)) - 6*(1+A(x))^2 + (1+A(x))^3.
a(n) = (Sum_{k=0..n-1} binomial(n+k-1,k)*binomial(3*n+k-2,n-k-1))/n. - Vladimir Kruchinin, Mar 11 2015
a(n) = binomial(3*n-2,n-1)*hypergeom([1-n,3*n-1],[n+1/2],-1/4)/n. - Peter Luschny, Mar 11 2015
5*n*(n-1)*a(n) - 27*(n-1)*(2*n-3)*a(n-1) - 3*(3*n-5)*(3*n-7)*a(n-2) = 0. - R. J. Mathar, Jul 15 2017
a(n) ~ 3^(n - 3/4) * (9 + 4*sqrt(6))^(n - 1/2) / (2^(5/4) * sqrt(Pi) * n^(3/2) * 5^(n - 1/2)). - Vaclav Kotesovec, Aug 22 2017
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 17*x^3 + 120*x^4 + 948*x^5 + 8022*x^6 + ...
Related expansions.
A(x)^2 = x^2 + 6*x^3 + 43*x^4 + 342*x^5 + 2905*x^6 + 25812*x^7 + ...
A(x)^3 = x^3 + 9*x^4 + 78*x^5 + 693*x^6 + 6330*x^7 + 59211*x^8 + ...
where x = A(x) - 3*A(x)^2 + A(x)^3.
Also, the g.f. satisfies:
1/x = 1/A(x) + 3 + 8*A(x) + 21*A(x)^2 + 55*A(x)^3 + 144*A(x)^4 + 377*A(x)^5 + 987*A(x)^6 + ... + Fibonacci(2*n) * A(x)^(n-2) + ...
MAPLE
a := n -> binomial(3*n-2, n-1)*hypergeom([1-n, 3*n-1], [n+1/2], -1/4)/n:
seq(simplify(a(n)), n=1..23); # Peter Luschny, Mar 11 2015
MATHEMATICA
a[n_] := Sum[Binomial[n+k-1, k]*Binomial[3*n+k-2, n-k-1], {k, 0, n-1}]/n; Array[a, 30] (* Jean-François Alcover, Mar 11 2015, after Vladimir Kruchinin *)
Rest[CoefficientList[InverseSeries[Series[x - 3*x^2 + x^3, {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Aug 22 2017 *)
PROG
(PARI) {a(n)=polcoeff(serreverse(x - 3*x^2 + x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
(Maxima)
a(n):=sum(binomial(n+k-1, k)*binomial(3*n+k-2, n-k-1), k, 0, n-1)/n; /* Vladimir Kruchinin, Mar 11 2015 */
CROSSREFS
Sequence in context: A344553 A121572 A340993 * A305307 A074543 A216314
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 28 2014
STATUS
approved