login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249932
G.f. A(x) satisfies: 1+x = 2*A(x)^4 - A(x)^7.
6
1, 1, 9, 189, 4893, 141771, 4399549, 143008579, 4806584226, 165685071354, 5825261477574, 208089042731934, 7531002619598458, 275548081670765638, 10175724606458649366, 378783118623851279250, 14197727780171976218883, 535401733845392629890255, 20298674469757725391376887
OFFSET
0,3
FORMULA
G.f.: 1 + Series_Reversion(x - 9*x^2 - 27*x^3 - 33*x^4 - 21*x^5 - 7*x^6 - x^7).
EXAMPLE
G.f.: A(x) = 1 + x + 9*x^2 + 189*x^3 + 4893*x^4 + 141771*x^5 +...
Related expansions.
A(x)^4 = 1 + 4*x + 42*x^2 + 868*x^3 + 22435*x^4 + 649488*x^5 +...
A(x)^7 = 1 + 7*x + 84*x^2 + 1736*x^3 + 44870*x^4 + 1298976*x^5 +...
where 1+x = 2*A(x)^4 - A(x)^7.
PROG
(PARI) /* From 1+x = 2*A(x)^4 - A(x)^7: */
{a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(2*Ser(A)^4-Ser(A)^7)[#A]); A[n+1]}
for(n=0, 25, print1(a(n) , ", "))
(PARI) /* From Series Reversion: */
{a(n)=local(A=1+serreverse(x - 9*x^2 - 27*x^3 - 33*x^4 - 21*x^5 - 7*x^6 - x^7 + x^2*O(x^n))); polcoeff(A, n)}
for(n=0, 25, print1(a(n) , ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2014
STATUS
approved