login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372215
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of G(x)^n evaluated at x = 1, where G(x) = (1 - 3*x - sqrt(1 - 10*x + 9*x^2))/(2*x) is the g.f. of A082298.
4
1, 5, 65, 1013, 16897, 292005, 5157569, 92456341, 1675300865, 30604622405, 562675808065, 10398428960309, 192983418877441, 3594314403564773, 67146652988725697, 1257656071818605013, 23609209650223284225, 444081728926392461445, 8367715805572617168449
OFFSET
0,2
COMMENTS
The sequence satisfies the Gauss congruences: a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all primes p and positive integers n and k.
We conjecture that the sequence satisfies the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all primes p >= 5 and positive integers n and k. Examples of these supercongruences are given below.
More generally, for each integer m, we conjecture that the sequence {a_m(n) : n >= 0}, defined by setting a_m(n) = the n-th order Taylor polynomial of G(x)^(m*n) evaluated at x = 1, satisfies the same supercongruences.
FORMULA
a(n) = [x^n] ( (1 + x)*G(x/(1 + x)) )^n.
O.g.f.: ( 1 + x*F'(x)/F(x) )/( 1 - x*F(x) ), where F(x) = (1/x)*Revert( x/G(x) ) = = 1 + 4*x + 36*x^2 + 420*x^3 + 5572*x^4 + ....
Row sums of the Riordan array ( 1 + x*F'(x)/F(x), x*F(x) ) belonging to the Hitting time subgroup of the Riordan group.
a(n) ~ 3^(3*n/2 + 3/4) * (1 + sqrt(3))^(2*n-1) / (sqrt(Pi*n) * 2^(n+1)). - Vaclav Kotesovec, May 02 2024
a(n) = [x^n] H(x)^n, where H(x) = 2*(1 + x)^2/(1 - 2*x + sqrt(1 - 8*x)), the g.f. of A182959, satisfies [x^(n)] H(x)^(3*n) = binomial(6*n, 2*n). - Peter Bala, Nov 07 2024
EXAMPLE
n-th order Taylor polynomial of G(x)^n:
n = 0: G(x)^0 = 1 + O(x)
n = 1: G(x)^1 = 1 + 4*x + O(x^2)
n = 2: G(x)^2 = 1 + 8*x + 56*x^2 + O(x^3)
n = 3: G(x)^3 = 1 + 12*x + 108*x^2 + 892 *x^3 + O(x^4)
n = 4: G(x)^4 = 1 + 16*x + 176*x^2 + 1680*x^3 + 15024*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 4 = 5, a(2) = 1 + 8 + 56 = 65, a(3) = 1 + 12 + 108 + 892 = 1013 and a(4) = 1 + 16 + 176 + 1680 + 15024 = 16897.
The triangle of coefficients of the n-th order Taylor polynomial of G(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 4 1 5
n = 2 | 56 8 1 65
n = 3 | 892 108 12 1 1013
n = 4 | 15024 1680 176 16 1 16897
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 3594314403564773 - 5 = (2^5)*(3^3)*(13^3)*29*7643*8543 == 0 (mod 13^3).
a(2*7) - a(2) = 67146652988725697 - 65 = (2^7)*3*(7^4)*23*3943*803057 = 0 (mod 7^4).
MAPLE
G := x -> (1/2)*(1 - 3*x - sqrt(1 - 10*x + 9*x^2))/x:
H := (x, n) -> series(G(x)^n, x, 21):
seq(add(coeff(H(x, n), x, k), k = 0..n), n = 0..20);
MATHEMATICA
Table[SeriesCoefficient[(2*(1 + x)^2/(1 - 2*x + Sqrt[1 - 8*x]))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2024 *)
PROG
(PARI) G(x) = (1 - 3*x - sqrt(1 - 10*x + 9*x^2))/(2*x);
a(n) = my(x='x+O('x^(n+2))); subst(Pol(Vec(G(x)^n)), 'x, 1); \\ Michel Marcus, May 07 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 23 2024
STATUS
approved