login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182959
Expansion of o.g.f. 2*(1+x)^2/(1-2*x+sqrt(1-8*x)).
5
1, 5, 20, 96, 528, 3136, 19584, 126720, 841984, 5710848, 39376896, 275185664, 1944821760, 13875707904, 99807723520, 722997411840, 5269761884160, 38620004352000, 284405842575360, 2103530005463040, 15619068033761280
OFFSET
0,2
LINKS
FORMULA
Let F(x) be the g.f. of A182960, then g.f. of this sequence satisfies:
* A(x) = F(x/A(x)^3) and A(x*F(x)^3) = F(x);
* A(x) = [x/Series_Reversion( x*F(x)^3 )]^(1/3).
G.f.: 1/2/x - 1/2 - x - (1+x)/x/G(0), where G(k)= 1 + 1/(1 - 4*x*(2*k+1)/(4*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
a(n) ~ 9*2^(3*n-2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
From Peter Bala, Oct 04 2015: (Start)
O.g.f. A(x) = (1 + x)*(2*C(2*x) - 1), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
[x^n] A(x)^(3*n) = binomial(6*n,2*n). Cf. with the identity [x^n] ( (1 + x)*C(x) )^(5*n) = binomial(5*n,2*n) = A001450(n). (End)
Conjecture: D-finite with recurrence (n+1)*a(n) +(-7*n+3)*a(n-1) +4*(-2*n+5)*a(n-2)=0. - R. J. Mathar, Jan 22 2020
From Peter Bala, May 15 2023: (Start)
a(n) = 3*(2^n)*(3*n - 1)/(n*(n + 1)) * binomial(2*n-2,n-1) for n >= 2.
(n + 1)*(3*n - 4)*a(n) = 4*(2*n - 3)*(3*n - 1)*a(n-1) for n >= 3 with a(2) = 20. Mathar's conjectured second order recurrence above follows from this. (End)
[x^n] A(x)^n = A372215(n). - Peter Bala, Nov 07 2024
EXAMPLE
G.f.: A(x) = 1 + 5*x + 20*x^2 + 96*x^3 + 528*x^4 + 3136*x^5 +...
where A(x*F(x)^3) = F(x) is the g.f. of A182960:
F(x) = 1 + 5*x + 95*x^2 + 2496*x^3 + 76063*x^4 + 2524161*x^5 +...
MATHEMATICA
CoefficientList[ Series[2 (1 + x)^2/(1 - 2 x + Sqrt[1 - 8 x]), {x, 0, 20}], x] (* Robert G. Wilson v, Dec 31 2010 *)
PROG
(PARI) {a(n)=polcoeff(2*(1+x)^2/(1-2*x+sqrt(1-8*x+x*O(x^n))), n)}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Dec 31 2010
STATUS
approved