login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182962
E.g.f. satisfies: A(x) = exp( x/(1 - x*A'(x)/A(x)) ).
19
1, 1, 3, 25, 433, 12501, 529531, 30495613, 2272643745, 211761416233, 24055076979091, 3267213865097601, 522451410607362193, 97120159467079471165, 20765771676360919883403, 5060640084128464622069221
OFFSET
0,3
LINKS
FORMULA
E.g.f.: A(x) = exp(x*F(x)) where F(x) = 1 + x*F(x)*d/dx[x*F(x)] is the o.g.f. of A088716.
E.g.f. satisfies: [x^n/n!] A(x)^n = n^2*[x^(n-1)/(n-1)!] A(x)^n for n>=1.
E.g.f. satisfies: [x^n/n!] A(x)^(n+1) = (n+1)*A156326(n) for n>=0.
E.g.f.: A(x) = x/Series_Reversion(x*G(x)) where A(x*G(x)) = G(x) is the e.g.f. of A156326, which satisfies:
. G(x) = exp( Sum_{n>=1} n^2 * A156326(n-1)*x^n/n! ).
a(n) ~ c * (n!)^2 * n, where c = 0.21795078944715106549... (see A238223). - Vaclav Kotesovec, Feb 22 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 25*x^3/3! + 433*x^4/4! +...
The logarithm of the e.g.f. is the integer series:
log(A(x)) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 621*x^6 + 5236*x^7 + 49680*x^8 +...+ A088716(n)*x^(n+1) +...
...
The coefficients of [x^n/n!] in the powers of e.g.f. A(x) begin:
A^1: [(1),(1), 3, 25, 433, 12501, 529531, 30495613, ...];
A^2: [1,(2),(8), 68, 1120, 30832, 1260544, 70737536, ...];
A^3: [1, 3,(15),(135), 2169, 57303, 2261439, 123523515, ...];
A^4: [1, 4, 24,(232),(3712), 94944, 3622336, 192461056, ...];
A^5: [1, 5, 35, 365, (5905),(147625), 5460475, 282185825, ...];
A^6: [1, 6, 48, 540, 8928, (220176),(7926336), 398625408, ...];
A^7: [1, 7, 63, 763, 12985, 318507,(11210479),(549313471), ...];
A^8: [1, 8, 80, 1040, 18304, 449728, 15551104,(743759360), ...];
...
In the above table, the coefficients in parenthesis are related by:
1*1 = 1; 8 = 2^2*2; 135 = 3^2*15; 3712 = 4^2*232; 147625 = 5^2*5905;
this illustrates: [x^n/n!] A(x)^n = n^2*[x^(n-1)/(n-1)!] A(x)^n.
...
Also note that the main diagonal in the above table begins:
[1*1, 2*1, 3*5, 4*58, 5*1181, 6*36696, 7*1601497, 8*92969920, ...];
this illustrates: [x^n/n!] A(x)^(n+1) = (n+1)*A156326(n).
...
Let G(x) denote the e.g.f. of A156326:
G(x) = 1 + x + 5*x^2/2! + 58*x^3/3! + 1181*x^4/4! + 36696*x^5/5! +...
then G(x) satisfies: G(x) = A(x*G(x)) and A(x) = G(x/A(x)) where
G(x) = exp( Sum_{n>=1} n^2 * A156326(n-1)*x^n/n! ).
...
MATHEMATICA
m = 16; A[_] = 1;
Do[A[x_] = Exp[x/(1 - x A'[x]/A[x])] + O[x]^m, {m}];
CoefficientList[A[x], x] Range[0, m-1]! (* Jean-François Alcover, Oct 29 2019 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(x/(1 - x*deriv(A)/A+x*O(x^n)))); n!*polcoeff(A, n)}
(PARI) {a(n)=local(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[#A]=((#A-1)*Vec(Ser(A)^(#A-1))[#A-1]-Vec(Ser(A)^(#A-1))[#A])/(#A-1)); n!*A[n+1]}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 01 2011
STATUS
approved