login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300990
E.g.f. A(x) satisfies: [x^n] A(x)^(5*n) = (n+4) * [x^(n-1)] A(x)^(5*n) for n>=1.
7
1, 1, 3, 49, 1777, 101541, 8140411, 855134533, 112545136929, 17984228218057, 3409574126285971, 753501858876909561, 191427165598888279633, 55281557535673696196269, 17980171490246227257206667, 6535371640250591590600624141, 2637140727761043517527505819201, 1174615924949881797618432103697553, 574619225547616163988810792896019619
OFFSET
0,3
LINKS
FORMULA
E.g.f. A(x) satisfies: A(x) = exp( x * (A(x) - 4*x*A'(x)) / (A(x) - 5*x*A'(x)) ).
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 49*x^3/3! + 1777*x^4/4! + 101541*x^5/5! + 8140411*x^6/6! + 855134533*x^7/7! + 112545136929*x^8/8! + 17984228218057*x^9/9! + ...
such that [x^n] A(x)^(5*n) = (n+4) * [x^(n-1)] A(x)^(5*n) for n>=1.
RELATED SERIES.
A(x)^5 = 1 + 5*x + 35*x^2/2! + 485*x^3/3! + 14545*x^4/4! + 756025*x^5/5! + 57290875*x^6/6! + 5790439625*x^7/7! + 740641270625*x^8/8! + 115751765142125*x^9/9! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(5*n) begins:
n=1: [(1), (5), 35/2, 485/6, 14545/24, 151205/24, ...];
n=2: [1, (10), (60), 1010/3, 6980/3, 21490, 2249000/9, ...];
n=3: [1, 15, (255/2), (1785/2), 51795/8, 449805/8, ...];
n=4: [1, 20, 220, (5620/3), (44960/3), 389740/3, ...];
n=5: [1, 25, 675/2, 20425/6, (730225/24), (2190675/8), ...];
n=6: [1, 30, 480, 5610, 55980, (534270), (5342700), ...]; ...
in which the coefficients in parenthesis are related by
5 = 5*(1); 60 = 6*(10); 1785/2 = 7*(255/2); 44960/3 = 8*(5620/3); 2190675/8 = 9*(730225/24); 5342700 = 10*(534270); ...
illustrating: [x^n] A(x)^(5*n) = (n+4) * [x^(n-1)] A(x)^(5*n).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is an integer power series in x satisfying
log(A(x)) = x * (1 - 4*x*A'(x)/A(x)) / (1 - 5*x*A'(x)/A(x));
explicitly,
log(A(x)) = x + x^2 + 7*x^3 + 66*x^4 + 769*x^5 + 10405*x^6 + 157540*x^7 + 2609120*x^8 + 46569365*x^9 + 886686635*x^10 + ... + A300991(n)*x^n + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(5*(#A-1))); A[#A] = ((#A+3)*V[#A-1] - V[#A])/(5*(#A-1)) ); n!*polcoeff( Ser(A), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n) = my(A=1); for(i=1, n, A = exp( x*(A-4*x*A')/(A-5*x*A' +x*O(x^n)) ) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 19 2018
STATUS
approved