login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167422
Expansion of (1+x)*c(x), c(x) the g.f. of A000108.
4
1, 2, 3, 7, 19, 56, 174, 561, 1859, 6292, 21658, 75582, 266798, 950912, 3417340, 12369285, 45052515, 165002460, 607283490, 2244901890, 8331383610, 31030387440, 115948830660, 434542177290, 1632963760974, 6151850548776
OFFSET
0,2
COMMENTS
Hankel transform is A167423.
Apparently a(n) = A071716(n) if n>1. - R. J. Mathar, Nov 12 2009
LINKS
Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2
FORMULA
a(n) = Sum_{k=0..n} A000108(k)*C(1,n-k).
a(0)= 1, a(n) = A005807(n-1) for n>0. - Philippe Deléham, Nov 25 2009
(n+1)*a(n) +(-3*n+1)*a(n-1) +2*(-2*n+5)*a(n-2)=0, for n>2. - R. J. Mathar, Feb 10 2015
-(n+1)*(5*n-6)*a(n) +2*(5*n-1)*(2*n-3)*a(n-1)=0. - R. J. Mathar, Feb 10 2015
The o.g.f. A(x) satisfies [x^n] A(x)^(5*n) = binomial(5*n,2*n) = A001450(n). Cf. A182959. - Peter Bala, Oct 04 2015
MAPLE
A167422List := proc(m) local A, P, n; A := [1, 2]; P := [1];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), A[-1]]);
A := [op(A), P[-1]] od; A end: A167422List(26); # Peter Luschny, Mar 24 2022
MATHEMATICA
Table[If[n < 2, n + 1, Binomial[2 n, n]/(n + 1) + Binomial[2 (n - 1), n - 1]/n], {n, 0, 25}] (* Michael De Vlieger, Oct 05 2015 *)
CoefficientList[Series[(1 + t)*(1 - Sqrt[1 - 4*t])/(2*t), {t, 0, 50}], t] (* G. C. Greubel, Jun 12 2016 *)
PROG
(PARI) a(n) = if (n<2, n+1, binomial(2*n, n)/(n+1) + binomial(2*(n-1), n-1)/n);
vector(50, n, a(n-1)) \\ Altug Alkan, Oct 04 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 03 2009
STATUS
approved