login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A001450
a(n) = binomial(5*n,2*n).
9
1, 10, 210, 5005, 125970, 3268760, 86493225, 2319959400, 62852101650, 1715884494940, 47129212243960, 1300853625660225, 36052387482172425, 1002596421878664480, 27963143931814663880, 781879430625942976880, 21910242651571684460050, 615167304833936727234180
OFFSET
0,2
LINKS
Peter Bala, A note on A001450
M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014.
M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, Discrete Mathematics, Volume 339, Issue 3, 6 March 2016, Pages 1116-1139.
FORMULA
a(n) = (5*n)!/((3*n)!*(2*n)!).
a(n) = 2F1[-3n,-2n,1,1] (see Mathematica code below). - John M. Campbell, Jul 15 2011
G.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1/3, 1/2, 2/3], (3125/108)*x). - Robert Israel, Aug 07 2014
From Peter Bala, Oct 05 2015: (Start)
a(n) = [x^n] ( (1 + x)*C(x) )^(5*n), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
a(n) = 5*A259550(n) for n >= 1.
exp( (1/5) * Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*x + 23*x^2 + 377*x^3 + ... is the o.g.f. for the sequence of Duchon numbers A060941. (End)
a(n) = [x^(2*n)] 1/(1 - x)^(3*n+1). - Ilya Gutkovskiy, Oct 10 2017
D-finite with recurrence 6*n*(3*n-1)*(2*n-1)*(3*n-2)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Feb 08 2021
a(n) = Sum_{k = 0..2*n} binomial(3*n+k-1, k). Cf. A066802. - Peter Bala, Jun 04 2024
Right-hand side of the identity Sum_{k = 0..2*n} (-1)^k*binomial(-n, k)* binomial(4*n-k, 2*n-k) = binomial(5*n, 2*n). Compare with the identity Sum_{k = 0..n} (-1)^k*binomial(n, k)*binomial(4*n-k, 2*n-k) = binomial(3*n, n). - Peter Bala, Jun 05 2024
MAPLE
f := n->(5*n)!/((3*n)!*(2*n)!);
MATHEMATICA
Table[Hypergeometric2F1[-3n, -2n, 1, 1], {n, 0, 60}] (* John M. Campbell, Jul 15 2011 *)
Table[Binomial[5n, 2n], {n, 0, 20}] (* Harvey P. Dale, Nov 09 2011 *)
PROG
(Magma) [Binomial(5*n, 2*n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014
(PARI) a(n) = binomial(5*n, 2*n) \\ Altug Alkan, Oct 06 2015
KEYWORD
nonn,easy
STATUS
approved